Power-efficient neural network with artificial dendrites
In the nervous system, dendrites, branches of neurons that transmit signals between synapses and soma, play a critical role in processing functions, such as nonlinear integration of postsynaptic signals. The lack of these critical functions in artificial neural networks compromises their performance...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2020-09, Vol.15 (9), p.776-782 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 782 |
---|---|
container_issue | 9 |
container_start_page | 776 |
container_title | Nature nanotechnology |
container_volume | 15 |
creator | Li, Xinyi Tang, Jianshi Zhang, Qingtian Gao, Bin Yang, J. Joshua Song, Sen Wu, Wei Zhang, Wenqiang Yao, Peng Deng, Ning Deng, Lei Xie, Yuan Qian, He Wu, Huaqiang |
description | In the nervous system, dendrites, branches of neurons that transmit signals between synapses and soma, play a critical role in processing functions, such as nonlinear integration of postsynaptic signals. The lack of these critical functions in artificial neural networks compromises their performance, for example in terms of flexibility, energy efficiency and the ability to handle complex tasks. Here, by developing artificial dendrites, we experimentally demonstrate a complete neural network fully integrated with synapses, dendrites and soma, implemented using scalable memristor devices. We perform a digit recognition task and simulate a multilayer network using experimentally derived device characteristics. The power consumption is more than three orders of magnitude lower than that of a central processing unit and 70 times lower than that of a typical application-specific integrated circuit chip. This network, equipped with functional dendrites, shows the potential of substantial overall performance improvement, for example by extracting critical information from a noisy background with significantly reduced power consumption and enhanced accuracy.
A memristor-based artificial dendrite enables the neural network to perform high-accuracy computation tasks with reduced power consumption. |
doi_str_mv | 10.1038/s41565-020-0722-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2419083294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475049964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-c8d10369b7f6194cdf39c9af725b645ba02a39ed53a7f85749792fdb99c18dab3</originalsourceid><addsrcrecordid>eNqNkV9LHDEUxUOxdNX2A_giC74IMvXm3yR5lMVWQWgf6nPIZJKadXeiSYal375ZZruCIPbpXpLfuZx7LkInGL5ioPIyM8xb3gCBBgQhDf-ADrFgsqFU8YN9L8UMHeW8BOBEEfYJzShpATOOD5H8GTcuNc77YIMbynxwYzKrWsompsf5JpSHuUklbP_re--GPoXi8mf00ZtVdl929Rjdf7v-tbhp7n58v11c3TWWAZTGyr5abVUnfIsVs72nyirjBeFdy3hngBiqXM-pEV5ywZRQxPedUhbL3nT0GJ1Pc59SfB5dLnodsnWrlRlcHLMmDCuQlChW0bNX6DKOaajuKiU4MKXadygGBGNFaaXwRNkUc07O66cU1ib90Rj0Nnw9ha9r-HobvuZVc7qbPHZr1-8V_9KugJyAjeuiz9vArdtjUO_DWL2ZqB3gRSimhDgs4jiUKr34f2mlyUTnSgy_XXrZ8W37fwEWR62u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440211933</pqid></control><display><type>article</type><title>Power-efficient neural network with artificial dendrites</title><source>MEDLINE</source><source>Nature</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Alma/SFX Local Collection</source><creator>Li, Xinyi ; Tang, Jianshi ; Zhang, Qingtian ; Gao, Bin ; Yang, J. Joshua ; Song, Sen ; Wu, Wei ; Zhang, Wenqiang ; Yao, Peng ; Deng, Ning ; Deng, Lei ; Xie, Yuan ; Qian, He ; Wu, Huaqiang</creator><creatorcontrib>Li, Xinyi ; Tang, Jianshi ; Zhang, Qingtian ; Gao, Bin ; Yang, J. Joshua ; Song, Sen ; Wu, Wei ; Zhang, Wenqiang ; Yao, Peng ; Deng, Ning ; Deng, Lei ; Xie, Yuan ; Qian, He ; Wu, Huaqiang</creatorcontrib><description>In the nervous system, dendrites, branches of neurons that transmit signals between synapses and soma, play a critical role in processing functions, such as nonlinear integration of postsynaptic signals. The lack of these critical functions in artificial neural networks compromises their performance, for example in terms of flexibility, energy efficiency and the ability to handle complex tasks. Here, by developing artificial dendrites, we experimentally demonstrate a complete neural network fully integrated with synapses, dendrites and soma, implemented using scalable memristor devices. We perform a digit recognition task and simulate a multilayer network using experimentally derived device characteristics. The power consumption is more than three orders of magnitude lower than that of a central processing unit and 70 times lower than that of a typical application-specific integrated circuit chip. This network, equipped with functional dendrites, shows the potential of substantial overall performance improvement, for example by extracting critical information from a noisy background with significantly reduced power consumption and enhanced accuracy.
A memristor-based artificial dendrite enables the neural network to perform high-accuracy computation tasks with reduced power consumption.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-020-0722-5</identifier><identifier>PMID: 32601451</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/987 ; 639/925/927/1007 ; Animals ; Application specific integrated circuits ; Artificial Cells ; Artificial neural networks ; Background noise ; Central processing units ; Chemistry and Materials Science ; Computer simulation ; CPUs ; Databases, Factual ; Dendrites ; Dendrites - physiology ; Electronics ; Energy efficiency ; Equipment Design ; Image Processing, Computer-Assisted ; Integrated circuits ; Materials Science ; Materials Science, Multidisciplinary ; Memristors ; Mice ; Models, Neurological ; Multilayers ; Nanoscience & Nanotechnology ; Nanotechnology ; Nanotechnology and Microengineering ; Nervous system ; Neural networks ; Neural Networks, Computer ; Neurons - physiology ; Oxygen - chemistry ; Power consumption ; Power management ; Science & Technology ; Science & Technology - Other Topics ; Signal processing ; Synapses ; Task complexity ; Technology</subject><ispartof>Nature nanotechnology, 2020-09, Vol.15 (9), p.776-782</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>157</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000544174700001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c400t-c8d10369b7f6194cdf39c9af725b645ba02a39ed53a7f85749792fdb99c18dab3</citedby><cites>FETCH-LOGICAL-c400t-c8d10369b7f6194cdf39c9af725b645ba02a39ed53a7f85749792fdb99c18dab3</cites><orcidid>0000-0002-2417-983X ; 0000-0003-2732-3419 ; 0000-0001-8369-0067 ; 0000-0001-8615-0162 ; 0000-0001-8359-7997 ; 0000-0003-0671-6010 ; 0000-0001-8242-7531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930,28253</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32601451$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xinyi</creatorcontrib><creatorcontrib>Tang, Jianshi</creatorcontrib><creatorcontrib>Zhang, Qingtian</creatorcontrib><creatorcontrib>Gao, Bin</creatorcontrib><creatorcontrib>Yang, J. Joshua</creatorcontrib><creatorcontrib>Song, Sen</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Zhang, Wenqiang</creatorcontrib><creatorcontrib>Yao, Peng</creatorcontrib><creatorcontrib>Deng, Ning</creatorcontrib><creatorcontrib>Deng, Lei</creatorcontrib><creatorcontrib>Xie, Yuan</creatorcontrib><creatorcontrib>Qian, He</creatorcontrib><creatorcontrib>Wu, Huaqiang</creatorcontrib><title>Power-efficient neural network with artificial dendrites</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><addtitle>NAT NANOTECHNOL</addtitle><addtitle>Nat Nanotechnol</addtitle><description>In the nervous system, dendrites, branches of neurons that transmit signals between synapses and soma, play a critical role in processing functions, such as nonlinear integration of postsynaptic signals. The lack of these critical functions in artificial neural networks compromises their performance, for example in terms of flexibility, energy efficiency and the ability to handle complex tasks. Here, by developing artificial dendrites, we experimentally demonstrate a complete neural network fully integrated with synapses, dendrites and soma, implemented using scalable memristor devices. We perform a digit recognition task and simulate a multilayer network using experimentally derived device characteristics. The power consumption is more than three orders of magnitude lower than that of a central processing unit and 70 times lower than that of a typical application-specific integrated circuit chip. This network, equipped with functional dendrites, shows the potential of substantial overall performance improvement, for example by extracting critical information from a noisy background with significantly reduced power consumption and enhanced accuracy.
A memristor-based artificial dendrite enables the neural network to perform high-accuracy computation tasks with reduced power consumption.</description><subject>639/166/987</subject><subject>639/925/927/1007</subject><subject>Animals</subject><subject>Application specific integrated circuits</subject><subject>Artificial Cells</subject><subject>Artificial neural networks</subject><subject>Background noise</subject><subject>Central processing units</subject><subject>Chemistry and Materials Science</subject><subject>Computer simulation</subject><subject>CPUs</subject><subject>Databases, Factual</subject><subject>Dendrites</subject><subject>Dendrites - physiology</subject><subject>Electronics</subject><subject>Energy efficiency</subject><subject>Equipment Design</subject><subject>Image Processing, Computer-Assisted</subject><subject>Integrated circuits</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Memristors</subject><subject>Mice</subject><subject>Models, Neurological</subject><subject>Multilayers</subject><subject>Nanoscience & Nanotechnology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Nervous system</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Neurons - physiology</subject><subject>Oxygen - chemistry</subject><subject>Power consumption</subject><subject>Power management</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Signal processing</subject><subject>Synapses</subject><subject>Task complexity</subject><subject>Technology</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkV9LHDEUxUOxdNX2A_giC74IMvXm3yR5lMVWQWgf6nPIZJKadXeiSYal375ZZruCIPbpXpLfuZx7LkInGL5ioPIyM8xb3gCBBgQhDf-ADrFgsqFU8YN9L8UMHeW8BOBEEfYJzShpATOOD5H8GTcuNc77YIMbynxwYzKrWsompsf5JpSHuUklbP_re--GPoXi8mf00ZtVdl929Rjdf7v-tbhp7n58v11c3TWWAZTGyr5abVUnfIsVs72nyirjBeFdy3hngBiqXM-pEV5ywZRQxPedUhbL3nT0GJ1Pc59SfB5dLnodsnWrlRlcHLMmDCuQlChW0bNX6DKOaajuKiU4MKXadygGBGNFaaXwRNkUc07O66cU1ib90Rj0Nnw9ha9r-HobvuZVc7qbPHZr1-8V_9KugJyAjeuiz9vArdtjUO_DWL2ZqB3gRSimhDgs4jiUKr34f2mlyUTnSgy_XXrZ8W37fwEWR62u</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Li, Xinyi</creator><creator>Tang, Jianshi</creator><creator>Zhang, Qingtian</creator><creator>Gao, Bin</creator><creator>Yang, J. Joshua</creator><creator>Song, Sen</creator><creator>Wu, Wei</creator><creator>Zhang, Wenqiang</creator><creator>Yao, Peng</creator><creator>Deng, Ning</creator><creator>Deng, Lei</creator><creator>Xie, Yuan</creator><creator>Qian, He</creator><creator>Wu, Huaqiang</creator><general>Nature Publishing Group UK</general><general>NATURE PORTFOLIO</general><general>Nature Publishing Group</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2417-983X</orcidid><orcidid>https://orcid.org/0000-0003-2732-3419</orcidid><orcidid>https://orcid.org/0000-0001-8369-0067</orcidid><orcidid>https://orcid.org/0000-0001-8615-0162</orcidid><orcidid>https://orcid.org/0000-0001-8359-7997</orcidid><orcidid>https://orcid.org/0000-0003-0671-6010</orcidid><orcidid>https://orcid.org/0000-0001-8242-7531</orcidid></search><sort><creationdate>20200901</creationdate><title>Power-efficient neural network with artificial dendrites</title><author>Li, Xinyi ; Tang, Jianshi ; Zhang, Qingtian ; Gao, Bin ; Yang, J. Joshua ; Song, Sen ; Wu, Wei ; Zhang, Wenqiang ; Yao, Peng ; Deng, Ning ; Deng, Lei ; Xie, Yuan ; Qian, He ; Wu, Huaqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-c8d10369b7f6194cdf39c9af725b645ba02a39ed53a7f85749792fdb99c18dab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/166/987</topic><topic>639/925/927/1007</topic><topic>Animals</topic><topic>Application specific integrated circuits</topic><topic>Artificial Cells</topic><topic>Artificial neural networks</topic><topic>Background noise</topic><topic>Central processing units</topic><topic>Chemistry and Materials Science</topic><topic>Computer simulation</topic><topic>CPUs</topic><topic>Databases, Factual</topic><topic>Dendrites</topic><topic>Dendrites - physiology</topic><topic>Electronics</topic><topic>Energy efficiency</topic><topic>Equipment Design</topic><topic>Image Processing, Computer-Assisted</topic><topic>Integrated circuits</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Memristors</topic><topic>Mice</topic><topic>Models, Neurological</topic><topic>Multilayers</topic><topic>Nanoscience & Nanotechnology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Nervous system</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Neurons - physiology</topic><topic>Oxygen - chemistry</topic><topic>Power consumption</topic><topic>Power management</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Signal processing</topic><topic>Synapses</topic><topic>Task complexity</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xinyi</creatorcontrib><creatorcontrib>Tang, Jianshi</creatorcontrib><creatorcontrib>Zhang, Qingtian</creatorcontrib><creatorcontrib>Gao, Bin</creatorcontrib><creatorcontrib>Yang, J. Joshua</creatorcontrib><creatorcontrib>Song, Sen</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Zhang, Wenqiang</creatorcontrib><creatorcontrib>Yao, Peng</creatorcontrib><creatorcontrib>Deng, Ning</creatorcontrib><creatorcontrib>Deng, Lei</creatorcontrib><creatorcontrib>Xie, Yuan</creatorcontrib><creatorcontrib>Qian, He</creatorcontrib><creatorcontrib>Wu, Huaqiang</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xinyi</au><au>Tang, Jianshi</au><au>Zhang, Qingtian</au><au>Gao, Bin</au><au>Yang, J. Joshua</au><au>Song, Sen</au><au>Wu, Wei</au><au>Zhang, Wenqiang</au><au>Yao, Peng</au><au>Deng, Ning</au><au>Deng, Lei</au><au>Xie, Yuan</au><au>Qian, He</au><au>Wu, Huaqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power-efficient neural network with artificial dendrites</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><stitle>NAT NANOTECHNOL</stitle><addtitle>Nat Nanotechnol</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>15</volume><issue>9</issue><spage>776</spage><epage>782</epage><pages>776-782</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>In the nervous system, dendrites, branches of neurons that transmit signals between synapses and soma, play a critical role in processing functions, such as nonlinear integration of postsynaptic signals. The lack of these critical functions in artificial neural networks compromises their performance, for example in terms of flexibility, energy efficiency and the ability to handle complex tasks. Here, by developing artificial dendrites, we experimentally demonstrate a complete neural network fully integrated with synapses, dendrites and soma, implemented using scalable memristor devices. We perform a digit recognition task and simulate a multilayer network using experimentally derived device characteristics. The power consumption is more than three orders of magnitude lower than that of a central processing unit and 70 times lower than that of a typical application-specific integrated circuit chip. This network, equipped with functional dendrites, shows the potential of substantial overall performance improvement, for example by extracting critical information from a noisy background with significantly reduced power consumption and enhanced accuracy.
A memristor-based artificial dendrite enables the neural network to perform high-accuracy computation tasks with reduced power consumption.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32601451</pmid><doi>10.1038/s41565-020-0722-5</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2417-983X</orcidid><orcidid>https://orcid.org/0000-0003-2732-3419</orcidid><orcidid>https://orcid.org/0000-0001-8369-0067</orcidid><orcidid>https://orcid.org/0000-0001-8615-0162</orcidid><orcidid>https://orcid.org/0000-0001-8359-7997</orcidid><orcidid>https://orcid.org/0000-0003-0671-6010</orcidid><orcidid>https://orcid.org/0000-0001-8242-7531</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-3387 |
ispartof | Nature nanotechnology, 2020-09, Vol.15 (9), p.776-782 |
issn | 1748-3387 1748-3395 |
language | eng |
recordid | cdi_proquest_miscellaneous_2419083294 |
source | MEDLINE; Nature; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection |
subjects | 639/166/987 639/925/927/1007 Animals Application specific integrated circuits Artificial Cells Artificial neural networks Background noise Central processing units Chemistry and Materials Science Computer simulation CPUs Databases, Factual Dendrites Dendrites - physiology Electronics Energy efficiency Equipment Design Image Processing, Computer-Assisted Integrated circuits Materials Science Materials Science, Multidisciplinary Memristors Mice Models, Neurological Multilayers Nanoscience & Nanotechnology Nanotechnology Nanotechnology and Microengineering Nervous system Neural networks Neural Networks, Computer Neurons - physiology Oxygen - chemistry Power consumption Power management Science & Technology Science & Technology - Other Topics Signal processing Synapses Task complexity Technology |
title | Power-efficient neural network with artificial dendrites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T00%3A56%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power-efficient%20neural%20network%20with%20artificial%20dendrites&rft.jtitle=Nature%20nanotechnology&rft.au=Li,%20Xinyi&rft.date=2020-09-01&rft.volume=15&rft.issue=9&rft.spage=776&rft.epage=782&rft.pages=776-782&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-020-0722-5&rft_dat=%3Cproquest_pubme%3E2475049964%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440211933&rft_id=info:pmid/32601451&rfr_iscdi=true |