Power-efficient neural network with artificial dendrites

In the nervous system, dendrites, branches of neurons that transmit signals between synapses and soma, play a critical role in processing functions, such as nonlinear integration of postsynaptic signals. The lack of these critical functions in artificial neural networks compromises their performance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2020-09, Vol.15 (9), p.776-782
Hauptverfasser: Li, Xinyi, Tang, Jianshi, Zhang, Qingtian, Gao, Bin, Yang, J. Joshua, Song, Sen, Wu, Wei, Zhang, Wenqiang, Yao, Peng, Deng, Ning, Deng, Lei, Xie, Yuan, Qian, He, Wu, Huaqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 782
container_issue 9
container_start_page 776
container_title Nature nanotechnology
container_volume 15
creator Li, Xinyi
Tang, Jianshi
Zhang, Qingtian
Gao, Bin
Yang, J. Joshua
Song, Sen
Wu, Wei
Zhang, Wenqiang
Yao, Peng
Deng, Ning
Deng, Lei
Xie, Yuan
Qian, He
Wu, Huaqiang
description In the nervous system, dendrites, branches of neurons that transmit signals between synapses and soma, play a critical role in processing functions, such as nonlinear integration of postsynaptic signals. The lack of these critical functions in artificial neural networks compromises their performance, for example in terms of flexibility, energy efficiency and the ability to handle complex tasks. Here, by developing artificial dendrites, we experimentally demonstrate a complete neural network fully integrated with synapses, dendrites and soma, implemented using scalable memristor devices. We perform a digit recognition task and simulate a multilayer network using experimentally derived device characteristics. The power consumption is more than three orders of magnitude lower than that of a central processing unit and 70 times lower than that of a typical application-specific integrated circuit chip. This network, equipped with functional dendrites, shows the potential of substantial overall performance improvement, for example by extracting critical information from a noisy background with significantly reduced power consumption and enhanced accuracy. A memristor-based artificial dendrite enables the neural network to perform high-accuracy computation tasks with reduced power consumption.
doi_str_mv 10.1038/s41565-020-0722-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2419083294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475049964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-c8d10369b7f6194cdf39c9af725b645ba02a39ed53a7f85749792fdb99c18dab3</originalsourceid><addsrcrecordid>eNqNkV9LHDEUxUOxdNX2A_giC74IMvXm3yR5lMVWQWgf6nPIZJKadXeiSYal375ZZruCIPbpXpLfuZx7LkInGL5ioPIyM8xb3gCBBgQhDf-ADrFgsqFU8YN9L8UMHeW8BOBEEfYJzShpATOOD5H8GTcuNc77YIMbynxwYzKrWsompsf5JpSHuUklbP_re--GPoXi8mf00ZtVdl929Rjdf7v-tbhp7n58v11c3TWWAZTGyr5abVUnfIsVs72nyirjBeFdy3hngBiqXM-pEV5ywZRQxPedUhbL3nT0GJ1Pc59SfB5dLnodsnWrlRlcHLMmDCuQlChW0bNX6DKOaajuKiU4MKXadygGBGNFaaXwRNkUc07O66cU1ib90Rj0Nnw9ha9r-HobvuZVc7qbPHZr1-8V_9KugJyAjeuiz9vArdtjUO_DWL2ZqB3gRSimhDgs4jiUKr34f2mlyUTnSgy_XXrZ8W37fwEWR62u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440211933</pqid></control><display><type>article</type><title>Power-efficient neural network with artificial dendrites</title><source>MEDLINE</source><source>Nature</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Li, Xinyi ; Tang, Jianshi ; Zhang, Qingtian ; Gao, Bin ; Yang, J. Joshua ; Song, Sen ; Wu, Wei ; Zhang, Wenqiang ; Yao, Peng ; Deng, Ning ; Deng, Lei ; Xie, Yuan ; Qian, He ; Wu, Huaqiang</creator><creatorcontrib>Li, Xinyi ; Tang, Jianshi ; Zhang, Qingtian ; Gao, Bin ; Yang, J. Joshua ; Song, Sen ; Wu, Wei ; Zhang, Wenqiang ; Yao, Peng ; Deng, Ning ; Deng, Lei ; Xie, Yuan ; Qian, He ; Wu, Huaqiang</creatorcontrib><description>In the nervous system, dendrites, branches of neurons that transmit signals between synapses and soma, play a critical role in processing functions, such as nonlinear integration of postsynaptic signals. The lack of these critical functions in artificial neural networks compromises their performance, for example in terms of flexibility, energy efficiency and the ability to handle complex tasks. Here, by developing artificial dendrites, we experimentally demonstrate a complete neural network fully integrated with synapses, dendrites and soma, implemented using scalable memristor devices. We perform a digit recognition task and simulate a multilayer network using experimentally derived device characteristics. The power consumption is more than three orders of magnitude lower than that of a central processing unit and 70 times lower than that of a typical application-specific integrated circuit chip. This network, equipped with functional dendrites, shows the potential of substantial overall performance improvement, for example by extracting critical information from a noisy background with significantly reduced power consumption and enhanced accuracy. A memristor-based artificial dendrite enables the neural network to perform high-accuracy computation tasks with reduced power consumption.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-020-0722-5</identifier><identifier>PMID: 32601451</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/987 ; 639/925/927/1007 ; Animals ; Application specific integrated circuits ; Artificial Cells ; Artificial neural networks ; Background noise ; Central processing units ; Chemistry and Materials Science ; Computer simulation ; CPUs ; Databases, Factual ; Dendrites ; Dendrites - physiology ; Electronics ; Energy efficiency ; Equipment Design ; Image Processing, Computer-Assisted ; Integrated circuits ; Materials Science ; Materials Science, Multidisciplinary ; Memristors ; Mice ; Models, Neurological ; Multilayers ; Nanoscience &amp; Nanotechnology ; Nanotechnology ; Nanotechnology and Microengineering ; Nervous system ; Neural networks ; Neural Networks, Computer ; Neurons - physiology ; Oxygen - chemistry ; Power consumption ; Power management ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Signal processing ; Synapses ; Task complexity ; Technology</subject><ispartof>Nature nanotechnology, 2020-09, Vol.15 (9), p.776-782</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>157</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000544174700001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c400t-c8d10369b7f6194cdf39c9af725b645ba02a39ed53a7f85749792fdb99c18dab3</citedby><cites>FETCH-LOGICAL-c400t-c8d10369b7f6194cdf39c9af725b645ba02a39ed53a7f85749792fdb99c18dab3</cites><orcidid>0000-0002-2417-983X ; 0000-0003-2732-3419 ; 0000-0001-8369-0067 ; 0000-0001-8615-0162 ; 0000-0001-8359-7997 ; 0000-0003-0671-6010 ; 0000-0001-8242-7531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930,28253</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32601451$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xinyi</creatorcontrib><creatorcontrib>Tang, Jianshi</creatorcontrib><creatorcontrib>Zhang, Qingtian</creatorcontrib><creatorcontrib>Gao, Bin</creatorcontrib><creatorcontrib>Yang, J. Joshua</creatorcontrib><creatorcontrib>Song, Sen</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Zhang, Wenqiang</creatorcontrib><creatorcontrib>Yao, Peng</creatorcontrib><creatorcontrib>Deng, Ning</creatorcontrib><creatorcontrib>Deng, Lei</creatorcontrib><creatorcontrib>Xie, Yuan</creatorcontrib><creatorcontrib>Qian, He</creatorcontrib><creatorcontrib>Wu, Huaqiang</creatorcontrib><title>Power-efficient neural network with artificial dendrites</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><addtitle>NAT NANOTECHNOL</addtitle><addtitle>Nat Nanotechnol</addtitle><description>In the nervous system, dendrites, branches of neurons that transmit signals between synapses and soma, play a critical role in processing functions, such as nonlinear integration of postsynaptic signals. The lack of these critical functions in artificial neural networks compromises their performance, for example in terms of flexibility, energy efficiency and the ability to handle complex tasks. Here, by developing artificial dendrites, we experimentally demonstrate a complete neural network fully integrated with synapses, dendrites and soma, implemented using scalable memristor devices. We perform a digit recognition task and simulate a multilayer network using experimentally derived device characteristics. The power consumption is more than three orders of magnitude lower than that of a central processing unit and 70 times lower than that of a typical application-specific integrated circuit chip. This network, equipped with functional dendrites, shows the potential of substantial overall performance improvement, for example by extracting critical information from a noisy background with significantly reduced power consumption and enhanced accuracy. A memristor-based artificial dendrite enables the neural network to perform high-accuracy computation tasks with reduced power consumption.</description><subject>639/166/987</subject><subject>639/925/927/1007</subject><subject>Animals</subject><subject>Application specific integrated circuits</subject><subject>Artificial Cells</subject><subject>Artificial neural networks</subject><subject>Background noise</subject><subject>Central processing units</subject><subject>Chemistry and Materials Science</subject><subject>Computer simulation</subject><subject>CPUs</subject><subject>Databases, Factual</subject><subject>Dendrites</subject><subject>Dendrites - physiology</subject><subject>Electronics</subject><subject>Energy efficiency</subject><subject>Equipment Design</subject><subject>Image Processing, Computer-Assisted</subject><subject>Integrated circuits</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Memristors</subject><subject>Mice</subject><subject>Models, Neurological</subject><subject>Multilayers</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Nervous system</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Neurons - physiology</subject><subject>Oxygen - chemistry</subject><subject>Power consumption</subject><subject>Power management</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Signal processing</subject><subject>Synapses</subject><subject>Task complexity</subject><subject>Technology</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkV9LHDEUxUOxdNX2A_giC74IMvXm3yR5lMVWQWgf6nPIZJKadXeiSYal375ZZruCIPbpXpLfuZx7LkInGL5ioPIyM8xb3gCBBgQhDf-ADrFgsqFU8YN9L8UMHeW8BOBEEfYJzShpATOOD5H8GTcuNc77YIMbynxwYzKrWsompsf5JpSHuUklbP_re--GPoXi8mf00ZtVdl929Rjdf7v-tbhp7n58v11c3TWWAZTGyr5abVUnfIsVs72nyirjBeFdy3hngBiqXM-pEV5ywZRQxPedUhbL3nT0GJ1Pc59SfB5dLnodsnWrlRlcHLMmDCuQlChW0bNX6DKOaajuKiU4MKXadygGBGNFaaXwRNkUc07O66cU1ib90Rj0Nnw9ha9r-HobvuZVc7qbPHZr1-8V_9KugJyAjeuiz9vArdtjUO_DWL2ZqB3gRSimhDgs4jiUKr34f2mlyUTnSgy_XXrZ8W37fwEWR62u</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Li, Xinyi</creator><creator>Tang, Jianshi</creator><creator>Zhang, Qingtian</creator><creator>Gao, Bin</creator><creator>Yang, J. Joshua</creator><creator>Song, Sen</creator><creator>Wu, Wei</creator><creator>Zhang, Wenqiang</creator><creator>Yao, Peng</creator><creator>Deng, Ning</creator><creator>Deng, Lei</creator><creator>Xie, Yuan</creator><creator>Qian, He</creator><creator>Wu, Huaqiang</creator><general>Nature Publishing Group UK</general><general>NATURE PORTFOLIO</general><general>Nature Publishing Group</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2417-983X</orcidid><orcidid>https://orcid.org/0000-0003-2732-3419</orcidid><orcidid>https://orcid.org/0000-0001-8369-0067</orcidid><orcidid>https://orcid.org/0000-0001-8615-0162</orcidid><orcidid>https://orcid.org/0000-0001-8359-7997</orcidid><orcidid>https://orcid.org/0000-0003-0671-6010</orcidid><orcidid>https://orcid.org/0000-0001-8242-7531</orcidid></search><sort><creationdate>20200901</creationdate><title>Power-efficient neural network with artificial dendrites</title><author>Li, Xinyi ; Tang, Jianshi ; Zhang, Qingtian ; Gao, Bin ; Yang, J. Joshua ; Song, Sen ; Wu, Wei ; Zhang, Wenqiang ; Yao, Peng ; Deng, Ning ; Deng, Lei ; Xie, Yuan ; Qian, He ; Wu, Huaqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-c8d10369b7f6194cdf39c9af725b645ba02a39ed53a7f85749792fdb99c18dab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/166/987</topic><topic>639/925/927/1007</topic><topic>Animals</topic><topic>Application specific integrated circuits</topic><topic>Artificial Cells</topic><topic>Artificial neural networks</topic><topic>Background noise</topic><topic>Central processing units</topic><topic>Chemistry and Materials Science</topic><topic>Computer simulation</topic><topic>CPUs</topic><topic>Databases, Factual</topic><topic>Dendrites</topic><topic>Dendrites - physiology</topic><topic>Electronics</topic><topic>Energy efficiency</topic><topic>Equipment Design</topic><topic>Image Processing, Computer-Assisted</topic><topic>Integrated circuits</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Memristors</topic><topic>Mice</topic><topic>Models, Neurological</topic><topic>Multilayers</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Nervous system</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Neurons - physiology</topic><topic>Oxygen - chemistry</topic><topic>Power consumption</topic><topic>Power management</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Signal processing</topic><topic>Synapses</topic><topic>Task complexity</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xinyi</creatorcontrib><creatorcontrib>Tang, Jianshi</creatorcontrib><creatorcontrib>Zhang, Qingtian</creatorcontrib><creatorcontrib>Gao, Bin</creatorcontrib><creatorcontrib>Yang, J. Joshua</creatorcontrib><creatorcontrib>Song, Sen</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Zhang, Wenqiang</creatorcontrib><creatorcontrib>Yao, Peng</creatorcontrib><creatorcontrib>Deng, Ning</creatorcontrib><creatorcontrib>Deng, Lei</creatorcontrib><creatorcontrib>Xie, Yuan</creatorcontrib><creatorcontrib>Qian, He</creatorcontrib><creatorcontrib>Wu, Huaqiang</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xinyi</au><au>Tang, Jianshi</au><au>Zhang, Qingtian</au><au>Gao, Bin</au><au>Yang, J. Joshua</au><au>Song, Sen</au><au>Wu, Wei</au><au>Zhang, Wenqiang</au><au>Yao, Peng</au><au>Deng, Ning</au><au>Deng, Lei</au><au>Xie, Yuan</au><au>Qian, He</au><au>Wu, Huaqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power-efficient neural network with artificial dendrites</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><stitle>NAT NANOTECHNOL</stitle><addtitle>Nat Nanotechnol</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>15</volume><issue>9</issue><spage>776</spage><epage>782</epage><pages>776-782</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>In the nervous system, dendrites, branches of neurons that transmit signals between synapses and soma, play a critical role in processing functions, such as nonlinear integration of postsynaptic signals. The lack of these critical functions in artificial neural networks compromises their performance, for example in terms of flexibility, energy efficiency and the ability to handle complex tasks. Here, by developing artificial dendrites, we experimentally demonstrate a complete neural network fully integrated with synapses, dendrites and soma, implemented using scalable memristor devices. We perform a digit recognition task and simulate a multilayer network using experimentally derived device characteristics. The power consumption is more than three orders of magnitude lower than that of a central processing unit and 70 times lower than that of a typical application-specific integrated circuit chip. This network, equipped with functional dendrites, shows the potential of substantial overall performance improvement, for example by extracting critical information from a noisy background with significantly reduced power consumption and enhanced accuracy. A memristor-based artificial dendrite enables the neural network to perform high-accuracy computation tasks with reduced power consumption.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32601451</pmid><doi>10.1038/s41565-020-0722-5</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2417-983X</orcidid><orcidid>https://orcid.org/0000-0003-2732-3419</orcidid><orcidid>https://orcid.org/0000-0001-8369-0067</orcidid><orcidid>https://orcid.org/0000-0001-8615-0162</orcidid><orcidid>https://orcid.org/0000-0001-8359-7997</orcidid><orcidid>https://orcid.org/0000-0003-0671-6010</orcidid><orcidid>https://orcid.org/0000-0001-8242-7531</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2020-09, Vol.15 (9), p.776-782
issn 1748-3387
1748-3395
language eng
recordid cdi_proquest_miscellaneous_2419083294
source MEDLINE; Nature; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects 639/166/987
639/925/927/1007
Animals
Application specific integrated circuits
Artificial Cells
Artificial neural networks
Background noise
Central processing units
Chemistry and Materials Science
Computer simulation
CPUs
Databases, Factual
Dendrites
Dendrites - physiology
Electronics
Energy efficiency
Equipment Design
Image Processing, Computer-Assisted
Integrated circuits
Materials Science
Materials Science, Multidisciplinary
Memristors
Mice
Models, Neurological
Multilayers
Nanoscience & Nanotechnology
Nanotechnology
Nanotechnology and Microengineering
Nervous system
Neural networks
Neural Networks, Computer
Neurons - physiology
Oxygen - chemistry
Power consumption
Power management
Science & Technology
Science & Technology - Other Topics
Signal processing
Synapses
Task complexity
Technology
title Power-efficient neural network with artificial dendrites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T00%3A56%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power-efficient%20neural%20network%20with%20artificial%20dendrites&rft.jtitle=Nature%20nanotechnology&rft.au=Li,%20Xinyi&rft.date=2020-09-01&rft.volume=15&rft.issue=9&rft.spage=776&rft.epage=782&rft.pages=776-782&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-020-0722-5&rft_dat=%3Cproquest_pubme%3E2475049964%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440211933&rft_id=info:pmid/32601451&rfr_iscdi=true