Model-based approach for predicting the impact of genetic modifications on product yield in biopharmaceutical manufacturing-Application to influenza vaccine production

A large group of biopharmaceuticals is produced in cell lines. The yield of such products can be increased by genetic engineering of the corresponding cell lines. The prediction of promising genetic modifications by mathematical modeling is a valuable tool to facilitate experimental screening. Besid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2020-06, Vol.16 (6), p.e1007810-e1007810, Article 1007810
Hauptverfasser: Duvigneau, Stefanie, Duerr, Robert, Laske, Tanja, Bachmann, Mandy, Dostert, Melanie, Kienle, Achim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1007810
container_issue 6
container_start_page e1007810
container_title PLoS computational biology
container_volume 16
creator Duvigneau, Stefanie
Duerr, Robert
Laske, Tanja
Bachmann, Mandy
Dostert, Melanie
Kienle, Achim
description A large group of biopharmaceuticals is produced in cell lines. The yield of such products can be increased by genetic engineering of the corresponding cell lines. The prediction of promising genetic modifications by mathematical modeling is a valuable tool to facilitate experimental screening. Besides information on the intracellular kinetics and genetic modifications the mathematical model has to account for ubiquitous cell-to-cell variability. In this contribution, we establish a novel model-based methodology for influenza vaccine production in cell lines with overexpressed genes. The manipulation of the expression level of genes coding for host cell factors relevant for virus replication is achieved by lentiviral transduction. Since lentiviral transduction causes increased cell-to-cell variability due to different copy numbers and integration sites of the gene constructs we use a population balance modeling approach to account for this heterogeneity in terms of intracellular viral components and distributed kinetic parameters. The latter are estimated from experimental data of intracellular viral RNA levels and virus titers of infection experiments using cells overexpressing a single host cell gene. For experiments with cells overexpressing multiple host cell genes, only final virus titers were measured and thus, no direct estimation of the parameter distributions was possible. Instead, we evaluate four different computational strategies to infer these from single gene parameter sets. Finally, the best computational strategy is used to predict the most promising candidates for future modifications that show the highest potential for an increased virus yield in a combinatorial study. As expected, there is a trend to higher yields the more modifications are included.
doi_str_mv 10.1371/journal.pcbi.1007810
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2419081866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632942171</galeid><doaj_id>oai_doaj_org_article_a1dd109314ad406dbfc097aaa44f7eef</doaj_id><sourcerecordid>A632942171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c638t-205eed33bbdc3696db60eae950bd03de7761fb17885623cfb65fb4df055e37973</originalsourceid><addsrcrecordid>eNqVk12L1DAUhoso7rr6DwQD3igyY9K0aXsjDIMfC6uCH-BdOE1OZrK0SU3a1fUP-TfN7HQXRvZC6UXCyfO-OSc9J8seM7pkvGIvz_0UHHTLQbV2ySitakbvZMesLPmi4mV992ZffDvKHsR4TmkKN-J-dsTzsqm54MfZ7_deY7doIaImMAzBg9oS4wMZAmqrRus2ZNwisf0AaiTekA06HK0ivdfWWAWj9S4S75LC6ykxlxY7TawjrfXDFkIPCqekgI704CaTfKaQfBerYehmAzL6pDDdhO4XkAtQyjq8dkznD7N7BrqIj-b1JPv65vWX9bvF2ce3p-vV2UIJXo-LnJaImvO21YqLRuhWUARsStpqyjVWlWCmZVVdlyLnyrSiNG2hDS1L5FVT8ZPsyd536HyU8xtHmRd5UYia13kiTveE9nAuh2B7CJfSg5VXAR82EkKqtkMJTGtGG84K0AVNyRhFmwoAisJUiCZ5vZpvm9oetUI3BugOTA9PnN3Kjb-QFc95U-6SeTYbBP99wjjK3kaFXQcO_bTLmzW0ZrUQCX36F3p7dTO1gVRA-iM-3at2pnIleN4UOatYopa3UOnT2FvlHRqb4geC5weCxIz4c9zAFKM8_fzpP9gPh2yxZ1XwMQY0N2_HqNyNyXWRcjcmch6TJKv3sh_YehOVRafwRkppaoeapl5JO1au7XjVoms_uTFJX_y7lP8BtyoqDg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424468382</pqid></control><display><type>article</type><title>Model-based approach for predicting the impact of genetic modifications on product yield in biopharmaceutical manufacturing-Application to influenza vaccine production</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><creator>Duvigneau, Stefanie ; Duerr, Robert ; Laske, Tanja ; Bachmann, Mandy ; Dostert, Melanie ; Kienle, Achim</creator><contributor>Alber, Mark</contributor><creatorcontrib>Duvigneau, Stefanie ; Duerr, Robert ; Laske, Tanja ; Bachmann, Mandy ; Dostert, Melanie ; Kienle, Achim ; Alber, Mark</creatorcontrib><description>A large group of biopharmaceuticals is produced in cell lines. The yield of such products can be increased by genetic engineering of the corresponding cell lines. The prediction of promising genetic modifications by mathematical modeling is a valuable tool to facilitate experimental screening. Besides information on the intracellular kinetics and genetic modifications the mathematical model has to account for ubiquitous cell-to-cell variability. In this contribution, we establish a novel model-based methodology for influenza vaccine production in cell lines with overexpressed genes. The manipulation of the expression level of genes coding for host cell factors relevant for virus replication is achieved by lentiviral transduction. Since lentiviral transduction causes increased cell-to-cell variability due to different copy numbers and integration sites of the gene constructs we use a population balance modeling approach to account for this heterogeneity in terms of intracellular viral components and distributed kinetic parameters. The latter are estimated from experimental data of intracellular viral RNA levels and virus titers of infection experiments using cells overexpressing a single host cell gene. For experiments with cells overexpressing multiple host cell genes, only final virus titers were measured and thus, no direct estimation of the parameter distributions was possible. Instead, we evaluate four different computational strategies to infer these from single gene parameter sets. Finally, the best computational strategy is used to predict the most promising candidates for future modifications that show the highest potential for an increased virus yield in a combinatorial study. As expected, there is a trend to higher yields the more modifications are included.</description><identifier>ISSN: 1553-734X</identifier><identifier>ISSN: 1553-7358</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1007810</identifier><identifier>PMID: 32598363</identifier><language>eng</language><publisher>SAN FRANCISCO: Public Library Science</publisher><subject>Analysis ; Automation ; Biochemical Research Methods ; Biochemistry &amp; Molecular Biology ; Biology and Life Sciences ; Biopharmaceuticals ; Biotechnology ; Cell culture ; Cell lines ; Combinatorial analysis ; Computer applications ; Engineering and Technology ; Gene expression ; Genes ; Genetic aspects ; Genetic engineering ; Heterogeneity ; Impact prediction ; Influenza ; Influenza vaccines ; Intracellular ; Life Sciences &amp; Biomedicine ; Mathematical &amp; Computational Biology ; Mathematical models ; Medicine and Health Sciences ; Methods ; Ordinary differential equations ; Pandemics ; Parameter estimation ; Pharmaceuticals ; Population ; Production processes ; Research and Analysis Methods ; Ribonucleic acid ; RNA ; RNA viruses ; Science &amp; Technology ; Simulation ; Software ; Studies ; Vaccines ; Viruses ; Yield</subject><ispartof>PLoS computational biology, 2020-06, Vol.16 (6), p.e1007810-e1007810, Article 1007810</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>2020 Duvigneau et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Duvigneau et al 2020 Duvigneau et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>6</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000558077600015</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c638t-205eed33bbdc3696db60eae950bd03de7761fb17885623cfb65fb4df055e37973</citedby><cites>FETCH-LOGICAL-c638t-205eed33bbdc3696db60eae950bd03de7761fb17885623cfb65fb4df055e37973</cites><orcidid>0000-0002-9011-0451 ; 0000-0002-7922-7595 ; 0000-0002-7829-5190 ; 0000-0001-5397-9302 ; 0000-0003-0654-7448 ; 0000-0003-0750-9937</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7323952/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7323952/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,2929,23871,27929,27930,28253,53796,53798</link.rule.ids></links><search><contributor>Alber, Mark</contributor><creatorcontrib>Duvigneau, Stefanie</creatorcontrib><creatorcontrib>Duerr, Robert</creatorcontrib><creatorcontrib>Laske, Tanja</creatorcontrib><creatorcontrib>Bachmann, Mandy</creatorcontrib><creatorcontrib>Dostert, Melanie</creatorcontrib><creatorcontrib>Kienle, Achim</creatorcontrib><title>Model-based approach for predicting the impact of genetic modifications on product yield in biopharmaceutical manufacturing-Application to influenza vaccine production</title><title>PLoS computational biology</title><addtitle>PLOS COMPUT BIOL</addtitle><description>A large group of biopharmaceuticals is produced in cell lines. The yield of such products can be increased by genetic engineering of the corresponding cell lines. The prediction of promising genetic modifications by mathematical modeling is a valuable tool to facilitate experimental screening. Besides information on the intracellular kinetics and genetic modifications the mathematical model has to account for ubiquitous cell-to-cell variability. In this contribution, we establish a novel model-based methodology for influenza vaccine production in cell lines with overexpressed genes. The manipulation of the expression level of genes coding for host cell factors relevant for virus replication is achieved by lentiviral transduction. Since lentiviral transduction causes increased cell-to-cell variability due to different copy numbers and integration sites of the gene constructs we use a population balance modeling approach to account for this heterogeneity in terms of intracellular viral components and distributed kinetic parameters. The latter are estimated from experimental data of intracellular viral RNA levels and virus titers of infection experiments using cells overexpressing a single host cell gene. For experiments with cells overexpressing multiple host cell genes, only final virus titers were measured and thus, no direct estimation of the parameter distributions was possible. Instead, we evaluate four different computational strategies to infer these from single gene parameter sets. Finally, the best computational strategy is used to predict the most promising candidates for future modifications that show the highest potential for an increased virus yield in a combinatorial study. As expected, there is a trend to higher yields the more modifications are included.</description><subject>Analysis</subject><subject>Automation</subject><subject>Biochemical Research Methods</subject><subject>Biochemistry &amp; Molecular Biology</subject><subject>Biology and Life Sciences</subject><subject>Biopharmaceuticals</subject><subject>Biotechnology</subject><subject>Cell culture</subject><subject>Cell lines</subject><subject>Combinatorial analysis</subject><subject>Computer applications</subject><subject>Engineering and Technology</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic engineering</subject><subject>Heterogeneity</subject><subject>Impact prediction</subject><subject>Influenza</subject><subject>Influenza vaccines</subject><subject>Intracellular</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Mathematical &amp; Computational Biology</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Ordinary differential equations</subject><subject>Pandemics</subject><subject>Parameter estimation</subject><subject>Pharmaceuticals</subject><subject>Population</subject><subject>Production processes</subject><subject>Research and Analysis Methods</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA viruses</subject><subject>Science &amp; Technology</subject><subject>Simulation</subject><subject>Software</subject><subject>Studies</subject><subject>Vaccines</subject><subject>Viruses</subject><subject>Yield</subject><issn>1553-734X</issn><issn>1553-7358</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk12L1DAUhoso7rr6DwQD3igyY9K0aXsjDIMfC6uCH-BdOE1OZrK0SU3a1fUP-TfN7HQXRvZC6UXCyfO-OSc9J8seM7pkvGIvz_0UHHTLQbV2ySitakbvZMesLPmi4mV992ZffDvKHsR4TmkKN-J-dsTzsqm54MfZ7_deY7doIaImMAzBg9oS4wMZAmqrRus2ZNwisf0AaiTekA06HK0ivdfWWAWj9S4S75LC6ykxlxY7TawjrfXDFkIPCqekgI704CaTfKaQfBerYehmAzL6pDDdhO4XkAtQyjq8dkznD7N7BrqIj-b1JPv65vWX9bvF2ce3p-vV2UIJXo-LnJaImvO21YqLRuhWUARsStpqyjVWlWCmZVVdlyLnyrSiNG2hDS1L5FVT8ZPsyd536HyU8xtHmRd5UYia13kiTveE9nAuh2B7CJfSg5VXAR82EkKqtkMJTGtGG84K0AVNyRhFmwoAisJUiCZ5vZpvm9oetUI3BugOTA9PnN3Kjb-QFc95U-6SeTYbBP99wjjK3kaFXQcO_bTLmzW0ZrUQCX36F3p7dTO1gVRA-iM-3at2pnIleN4UOatYopa3UOnT2FvlHRqb4geC5weCxIz4c9zAFKM8_fzpP9gPh2yxZ1XwMQY0N2_HqNyNyXWRcjcmch6TJKv3sh_YehOVRafwRkppaoeapl5JO1au7XjVoms_uTFJX_y7lP8BtyoqDg</recordid><startdate>20200629</startdate><enddate>20200629</enddate><creator>Duvigneau, Stefanie</creator><creator>Duerr, Robert</creator><creator>Laske, Tanja</creator><creator>Bachmann, Mandy</creator><creator>Dostert, Melanie</creator><creator>Kienle, Achim</creator><general>Public Library Science</general><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9011-0451</orcidid><orcidid>https://orcid.org/0000-0002-7922-7595</orcidid><orcidid>https://orcid.org/0000-0002-7829-5190</orcidid><orcidid>https://orcid.org/0000-0001-5397-9302</orcidid><orcidid>https://orcid.org/0000-0003-0654-7448</orcidid><orcidid>https://orcid.org/0000-0003-0750-9937</orcidid></search><sort><creationdate>20200629</creationdate><title>Model-based approach for predicting the impact of genetic modifications on product yield in biopharmaceutical manufacturing-Application to influenza vaccine production</title><author>Duvigneau, Stefanie ; Duerr, Robert ; Laske, Tanja ; Bachmann, Mandy ; Dostert, Melanie ; Kienle, Achim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c638t-205eed33bbdc3696db60eae950bd03de7761fb17885623cfb65fb4df055e37973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Automation</topic><topic>Biochemical Research Methods</topic><topic>Biochemistry &amp; Molecular Biology</topic><topic>Biology and Life Sciences</topic><topic>Biopharmaceuticals</topic><topic>Biotechnology</topic><topic>Cell culture</topic><topic>Cell lines</topic><topic>Combinatorial analysis</topic><topic>Computer applications</topic><topic>Engineering and Technology</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic engineering</topic><topic>Heterogeneity</topic><topic>Impact prediction</topic><topic>Influenza</topic><topic>Influenza vaccines</topic><topic>Intracellular</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Mathematical &amp; Computational Biology</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Ordinary differential equations</topic><topic>Pandemics</topic><topic>Parameter estimation</topic><topic>Pharmaceuticals</topic><topic>Population</topic><topic>Production processes</topic><topic>Research and Analysis Methods</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA viruses</topic><topic>Science &amp; Technology</topic><topic>Simulation</topic><topic>Software</topic><topic>Studies</topic><topic>Vaccines</topic><topic>Viruses</topic><topic>Yield</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duvigneau, Stefanie</creatorcontrib><creatorcontrib>Duerr, Robert</creatorcontrib><creatorcontrib>Laske, Tanja</creatorcontrib><creatorcontrib>Bachmann, Mandy</creatorcontrib><creatorcontrib>Dostert, Melanie</creatorcontrib><creatorcontrib>Kienle, Achim</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duvigneau, Stefanie</au><au>Duerr, Robert</au><au>Laske, Tanja</au><au>Bachmann, Mandy</au><au>Dostert, Melanie</au><au>Kienle, Achim</au><au>Alber, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-based approach for predicting the impact of genetic modifications on product yield in biopharmaceutical manufacturing-Application to influenza vaccine production</atitle><jtitle>PLoS computational biology</jtitle><stitle>PLOS COMPUT BIOL</stitle><date>2020-06-29</date><risdate>2020</risdate><volume>16</volume><issue>6</issue><spage>e1007810</spage><epage>e1007810</epage><pages>e1007810-e1007810</pages><artnum>1007810</artnum><issn>1553-734X</issn><issn>1553-7358</issn><eissn>1553-7358</eissn><abstract>A large group of biopharmaceuticals is produced in cell lines. The yield of such products can be increased by genetic engineering of the corresponding cell lines. The prediction of promising genetic modifications by mathematical modeling is a valuable tool to facilitate experimental screening. Besides information on the intracellular kinetics and genetic modifications the mathematical model has to account for ubiquitous cell-to-cell variability. In this contribution, we establish a novel model-based methodology for influenza vaccine production in cell lines with overexpressed genes. The manipulation of the expression level of genes coding for host cell factors relevant for virus replication is achieved by lentiviral transduction. Since lentiviral transduction causes increased cell-to-cell variability due to different copy numbers and integration sites of the gene constructs we use a population balance modeling approach to account for this heterogeneity in terms of intracellular viral components and distributed kinetic parameters. The latter are estimated from experimental data of intracellular viral RNA levels and virus titers of infection experiments using cells overexpressing a single host cell gene. For experiments with cells overexpressing multiple host cell genes, only final virus titers were measured and thus, no direct estimation of the parameter distributions was possible. Instead, we evaluate four different computational strategies to infer these from single gene parameter sets. Finally, the best computational strategy is used to predict the most promising candidates for future modifications that show the highest potential for an increased virus yield in a combinatorial study. As expected, there is a trend to higher yields the more modifications are included.</abstract><cop>SAN FRANCISCO</cop><pub>Public Library Science</pub><pmid>32598363</pmid><doi>10.1371/journal.pcbi.1007810</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-9011-0451</orcidid><orcidid>https://orcid.org/0000-0002-7922-7595</orcidid><orcidid>https://orcid.org/0000-0002-7829-5190</orcidid><orcidid>https://orcid.org/0000-0001-5397-9302</orcidid><orcidid>https://orcid.org/0000-0003-0654-7448</orcidid><orcidid>https://orcid.org/0000-0003-0750-9937</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-734X
ispartof PLoS computational biology, 2020-06, Vol.16 (6), p.e1007810-e1007810, Article 1007810
issn 1553-734X
1553-7358
1553-7358
language eng
recordid cdi_proquest_miscellaneous_2419081866
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central
subjects Analysis
Automation
Biochemical Research Methods
Biochemistry & Molecular Biology
Biology and Life Sciences
Biopharmaceuticals
Biotechnology
Cell culture
Cell lines
Combinatorial analysis
Computer applications
Engineering and Technology
Gene expression
Genes
Genetic aspects
Genetic engineering
Heterogeneity
Impact prediction
Influenza
Influenza vaccines
Intracellular
Life Sciences & Biomedicine
Mathematical & Computational Biology
Mathematical models
Medicine and Health Sciences
Methods
Ordinary differential equations
Pandemics
Parameter estimation
Pharmaceuticals
Population
Production processes
Research and Analysis Methods
Ribonucleic acid
RNA
RNA viruses
Science & Technology
Simulation
Software
Studies
Vaccines
Viruses
Yield
title Model-based approach for predicting the impact of genetic modifications on product yield in biopharmaceutical manufacturing-Application to influenza vaccine production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T05%3A19%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-based%20approach%20for%20predicting%20the%20impact%20of%20genetic%20modifications%20on%20product%20yield%20in%20biopharmaceutical%20manufacturing-Application%20to%20influenza%20vaccine%20production&rft.jtitle=PLoS%20computational%20biology&rft.au=Duvigneau,%20Stefanie&rft.date=2020-06-29&rft.volume=16&rft.issue=6&rft.spage=e1007810&rft.epage=e1007810&rft.pages=e1007810-e1007810&rft.artnum=1007810&rft.issn=1553-734X&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1007810&rft_dat=%3Cgale_proqu%3EA632942171%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424468382&rft_id=info:pmid/32598363&rft_galeid=A632942171&rft_doaj_id=oai_doaj_org_article_a1dd109314ad406dbfc097aaa44f7eef&rfr_iscdi=true