Ferrocene‐Incorporated Cobalt Sulfide Nanoarchitecture for Superior Oxygen Evolution Reaction

Here, ferrocene(Fc)‐incorporated cobalt sulfide (CoxSy) nanostructures directly grown on carbon nanotube (CNT) or carbon fiber (CF) networks for electrochemical oxygen evolution reaction (OER) using a facile one‐step solvothermal method are reported. The strong synergistic interaction between Fc‐Cox...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2020-08, Vol.16 (31), p.e2001665-n/a
Hauptverfasser: Thangasamy, Pitchai, Oh, Saewoong, Nam, Sanghee, Randriamahazaka, Hyacinthe, Oh, Il‐Kwon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 31
container_start_page e2001665
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 16
creator Thangasamy, Pitchai
Oh, Saewoong
Nam, Sanghee
Randriamahazaka, Hyacinthe
Oh, Il‐Kwon
description Here, ferrocene(Fc)‐incorporated cobalt sulfide (CoxSy) nanostructures directly grown on carbon nanotube (CNT) or carbon fiber (CF) networks for electrochemical oxygen evolution reaction (OER) using a facile one‐step solvothermal method are reported. The strong synergistic interaction between Fc‐CoxSy nanostructures and electrically conductive CNTs results in the superior electrocatalytic activity with a very small overpotential of ≈304 mV at 10 mA cm−2 and a low Tafel slope of 54.2 mV dec−1 in 1 m KOH electrolyte. Furthermore, the Fc‐incorporated CoxSy (FCoS) nanostructures are directly grown on the acid pretreated carbon fiber (ACF), and the resulting fabricated electrode delivers excellent OER performance with a low overpotential of ≈315 mV at 10 mA cm−2. Such superior OER catalytic activity can be attributed to 3D Fc‐CoxSy nanoarchitectures that consist of a high concentration of vertical nanosheets with uniform distribution of nanoparticles that afford a large number of active surface areas and edge sites. Besides, the tight contact interface between ACF substrate and Fc‐CoxSy nanostructures could effectively facilitate the electron transfer rate in the OER. This study provides valuable insights for the rational design of energy storage and conversion materials by the incorporation of other transition metal into metal sulfide/oxide nanostructures utilizing metallocene. A facile and one‐step solvothermal approach is demonstrated to reform the local electronic structure of cobalt sulfide nanostructures by the incorporation of Fe‐based compounds derived from ferrocene, and nitrogen‐doped carbon nanostructures for robust oxygen evolution reaction.
doi_str_mv 10.1002/smll.202001665
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2418729634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418729634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3875-d9c929b63b95ac93a0e40cd5bda1a2ccb4ad9e2ea3a0e77eb35d66a132b6ec0b3</originalsourceid><addsrcrecordid>eNqFkM1Kw0AUhQdRsFa3rgNu3KTOTzLJLKVULUQLVtfDZHKjKdNMnEnU7nwEn9EnMaFSwY2re-B853A5CJ0SPCEY0wu_NmZCMcWYcB7voRHhhIU8pWJ_pwk-REferzBmhEbJCMkrcM5qqOHr43Nea-sa61QLRTC1uTJtsOxMWRUQ3KnaKqefqxZ02zkISut6swFX9WLxvnmCOpi9WtO1la2De1B6EMfooFTGw8nPHaPHq9nD9CbMFtfz6WUWapYmcVgILajIOctFrLRgCkOEdRHnhSKKap1HqhBAQQ1OkkDO4oJzRRjNOWicszE63_Y2zr504Fu5rrwGY1QNtvOSRiRNqOAs6tGzP-jKdq7uv-sphuMkTZnoqcmW0s5676CUjavWym0kwXLYWw57y93efUBsA2-Vgc0_tFzeZtlv9hsWsIep</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430578839</pqid></control><display><type>article</type><title>Ferrocene‐Incorporated Cobalt Sulfide Nanoarchitecture for Superior Oxygen Evolution Reaction</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Thangasamy, Pitchai ; Oh, Saewoong ; Nam, Sanghee ; Randriamahazaka, Hyacinthe ; Oh, Il‐Kwon</creator><creatorcontrib>Thangasamy, Pitchai ; Oh, Saewoong ; Nam, Sanghee ; Randriamahazaka, Hyacinthe ; Oh, Il‐Kwon</creatorcontrib><description>Here, ferrocene(Fc)‐incorporated cobalt sulfide (CoxSy) nanostructures directly grown on carbon nanotube (CNT) or carbon fiber (CF) networks for electrochemical oxygen evolution reaction (OER) using a facile one‐step solvothermal method are reported. The strong synergistic interaction between Fc‐CoxSy nanostructures and electrically conductive CNTs results in the superior electrocatalytic activity with a very small overpotential of ≈304 mV at 10 mA cm−2 and a low Tafel slope of 54.2 mV dec−1 in 1 m KOH electrolyte. Furthermore, the Fc‐incorporated CoxSy (FCoS) nanostructures are directly grown on the acid pretreated carbon fiber (ACF), and the resulting fabricated electrode delivers excellent OER performance with a low overpotential of ≈315 mV at 10 mA cm−2. Such superior OER catalytic activity can be attributed to 3D Fc‐CoxSy nanoarchitectures that consist of a high concentration of vertical nanosheets with uniform distribution of nanoparticles that afford a large number of active surface areas and edge sites. Besides, the tight contact interface between ACF substrate and Fc‐CoxSy nanostructures could effectively facilitate the electron transfer rate in the OER. This study provides valuable insights for the rational design of energy storage and conversion materials by the incorporation of other transition metal into metal sulfide/oxide nanostructures utilizing metallocene. A facile and one‐step solvothermal approach is demonstrated to reform the local electronic structure of cobalt sulfide nanostructures by the incorporation of Fe‐based compounds derived from ferrocene, and nitrogen‐doped carbon nanostructures for robust oxygen evolution reaction.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202001665</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>carbon ; Carbon fibers ; Carbon nanotubes ; Catalytic activity ; Cobalt sulfide ; Electric contacts ; Electron transfer ; Energy storage ; ferrocene ; Nanoparticles ; Nanostructure ; Nanotechnology ; oxygen evolution reaction ; Oxygen evolution reactions ; Substrates ; Transition metals ; Vertical distribution ; water splitting</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2020-08, Vol.16 (31), p.e2001665-n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3875-d9c929b63b95ac93a0e40cd5bda1a2ccb4ad9e2ea3a0e77eb35d66a132b6ec0b3</citedby><cites>FETCH-LOGICAL-c3875-d9c929b63b95ac93a0e40cd5bda1a2ccb4ad9e2ea3a0e77eb35d66a132b6ec0b3</cites><orcidid>0000-0002-6705-7664</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202001665$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202001665$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Thangasamy, Pitchai</creatorcontrib><creatorcontrib>Oh, Saewoong</creatorcontrib><creatorcontrib>Nam, Sanghee</creatorcontrib><creatorcontrib>Randriamahazaka, Hyacinthe</creatorcontrib><creatorcontrib>Oh, Il‐Kwon</creatorcontrib><title>Ferrocene‐Incorporated Cobalt Sulfide Nanoarchitecture for Superior Oxygen Evolution Reaction</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Here, ferrocene(Fc)‐incorporated cobalt sulfide (CoxSy) nanostructures directly grown on carbon nanotube (CNT) or carbon fiber (CF) networks for electrochemical oxygen evolution reaction (OER) using a facile one‐step solvothermal method are reported. The strong synergistic interaction between Fc‐CoxSy nanostructures and electrically conductive CNTs results in the superior electrocatalytic activity with a very small overpotential of ≈304 mV at 10 mA cm−2 and a low Tafel slope of 54.2 mV dec−1 in 1 m KOH electrolyte. Furthermore, the Fc‐incorporated CoxSy (FCoS) nanostructures are directly grown on the acid pretreated carbon fiber (ACF), and the resulting fabricated electrode delivers excellent OER performance with a low overpotential of ≈315 mV at 10 mA cm−2. Such superior OER catalytic activity can be attributed to 3D Fc‐CoxSy nanoarchitectures that consist of a high concentration of vertical nanosheets with uniform distribution of nanoparticles that afford a large number of active surface areas and edge sites. Besides, the tight contact interface between ACF substrate and Fc‐CoxSy nanostructures could effectively facilitate the electron transfer rate in the OER. This study provides valuable insights for the rational design of energy storage and conversion materials by the incorporation of other transition metal into metal sulfide/oxide nanostructures utilizing metallocene. A facile and one‐step solvothermal approach is demonstrated to reform the local electronic structure of cobalt sulfide nanostructures by the incorporation of Fe‐based compounds derived from ferrocene, and nitrogen‐doped carbon nanostructures for robust oxygen evolution reaction.</description><subject>carbon</subject><subject>Carbon fibers</subject><subject>Carbon nanotubes</subject><subject>Catalytic activity</subject><subject>Cobalt sulfide</subject><subject>Electric contacts</subject><subject>Electron transfer</subject><subject>Energy storage</subject><subject>ferrocene</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>Substrates</subject><subject>Transition metals</subject><subject>Vertical distribution</subject><subject>water splitting</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Kw0AUhQdRsFa3rgNu3KTOTzLJLKVULUQLVtfDZHKjKdNMnEnU7nwEn9EnMaFSwY2re-B853A5CJ0SPCEY0wu_NmZCMcWYcB7voRHhhIU8pWJ_pwk-REferzBmhEbJCMkrcM5qqOHr43Nea-sa61QLRTC1uTJtsOxMWRUQ3KnaKqefqxZ02zkISut6swFX9WLxvnmCOpi9WtO1la2De1B6EMfooFTGw8nPHaPHq9nD9CbMFtfz6WUWapYmcVgILajIOctFrLRgCkOEdRHnhSKKap1HqhBAQQ1OkkDO4oJzRRjNOWicszE63_Y2zr504Fu5rrwGY1QNtvOSRiRNqOAs6tGzP-jKdq7uv-sphuMkTZnoqcmW0s5676CUjavWym0kwXLYWw57y93efUBsA2-Vgc0_tFzeZtlv9hsWsIep</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Thangasamy, Pitchai</creator><creator>Oh, Saewoong</creator><creator>Nam, Sanghee</creator><creator>Randriamahazaka, Hyacinthe</creator><creator>Oh, Il‐Kwon</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6705-7664</orcidid></search><sort><creationdate>20200801</creationdate><title>Ferrocene‐Incorporated Cobalt Sulfide Nanoarchitecture for Superior Oxygen Evolution Reaction</title><author>Thangasamy, Pitchai ; Oh, Saewoong ; Nam, Sanghee ; Randriamahazaka, Hyacinthe ; Oh, Il‐Kwon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3875-d9c929b63b95ac93a0e40cd5bda1a2ccb4ad9e2ea3a0e77eb35d66a132b6ec0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>carbon</topic><topic>Carbon fibers</topic><topic>Carbon nanotubes</topic><topic>Catalytic activity</topic><topic>Cobalt sulfide</topic><topic>Electric contacts</topic><topic>Electron transfer</topic><topic>Energy storage</topic><topic>ferrocene</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>Substrates</topic><topic>Transition metals</topic><topic>Vertical distribution</topic><topic>water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thangasamy, Pitchai</creatorcontrib><creatorcontrib>Oh, Saewoong</creatorcontrib><creatorcontrib>Nam, Sanghee</creatorcontrib><creatorcontrib>Randriamahazaka, Hyacinthe</creatorcontrib><creatorcontrib>Oh, Il‐Kwon</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thangasamy, Pitchai</au><au>Oh, Saewoong</au><au>Nam, Sanghee</au><au>Randriamahazaka, Hyacinthe</au><au>Oh, Il‐Kwon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ferrocene‐Incorporated Cobalt Sulfide Nanoarchitecture for Superior Oxygen Evolution Reaction</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>16</volume><issue>31</issue><spage>e2001665</spage><epage>n/a</epage><pages>e2001665-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Here, ferrocene(Fc)‐incorporated cobalt sulfide (CoxSy) nanostructures directly grown on carbon nanotube (CNT) or carbon fiber (CF) networks for electrochemical oxygen evolution reaction (OER) using a facile one‐step solvothermal method are reported. The strong synergistic interaction between Fc‐CoxSy nanostructures and electrically conductive CNTs results in the superior electrocatalytic activity with a very small overpotential of ≈304 mV at 10 mA cm−2 and a low Tafel slope of 54.2 mV dec−1 in 1 m KOH electrolyte. Furthermore, the Fc‐incorporated CoxSy (FCoS) nanostructures are directly grown on the acid pretreated carbon fiber (ACF), and the resulting fabricated electrode delivers excellent OER performance with a low overpotential of ≈315 mV at 10 mA cm−2. Such superior OER catalytic activity can be attributed to 3D Fc‐CoxSy nanoarchitectures that consist of a high concentration of vertical nanosheets with uniform distribution of nanoparticles that afford a large number of active surface areas and edge sites. Besides, the tight contact interface between ACF substrate and Fc‐CoxSy nanostructures could effectively facilitate the electron transfer rate in the OER. This study provides valuable insights for the rational design of energy storage and conversion materials by the incorporation of other transition metal into metal sulfide/oxide nanostructures utilizing metallocene. A facile and one‐step solvothermal approach is demonstrated to reform the local electronic structure of cobalt sulfide nanostructures by the incorporation of Fe‐based compounds derived from ferrocene, and nitrogen‐doped carbon nanostructures for robust oxygen evolution reaction.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202001665</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6705-7664</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2020-08, Vol.16 (31), p.e2001665-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2418729634
source Wiley Online Library - AutoHoldings Journals
subjects carbon
Carbon fibers
Carbon nanotubes
Catalytic activity
Cobalt sulfide
Electric contacts
Electron transfer
Energy storage
ferrocene
Nanoparticles
Nanostructure
Nanotechnology
oxygen evolution reaction
Oxygen evolution reactions
Substrates
Transition metals
Vertical distribution
water splitting
title Ferrocene‐Incorporated Cobalt Sulfide Nanoarchitecture for Superior Oxygen Evolution Reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A56%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ferrocene%E2%80%90Incorporated%20Cobalt%20Sulfide%20Nanoarchitecture%20for%20Superior%20Oxygen%20Evolution%20Reaction&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Thangasamy,%20Pitchai&rft.date=2020-08-01&rft.volume=16&rft.issue=31&rft.spage=e2001665&rft.epage=n/a&rft.pages=e2001665-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202001665&rft_dat=%3Cproquest_cross%3E2418729634%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430578839&rft_id=info:pmid/&rfr_iscdi=true