Programming Diffusion and Localization of DNA Signals in 3D‐Printed DNA‐Functionalized Hydrogels
Additive manufacturing enables the generation of 3D structures with predefined shapes from a wide range of printable materials. However, most of the materials employed so far are static and do not provide any intrinsic programmability or pattern‐forming capability. Here, a low‐cost 3D bioprinting ap...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2020-08, Vol.16 (31), p.e2001815-n/a, Article 2001815 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 31 |
container_start_page | e2001815 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 16 |
creator | Müller, Julia Jäkel, Anna Christina Schwarz, Dominic Aufinger, Lukas Simmel, Friedrich C. |
description | Additive manufacturing enables the generation of 3D structures with predefined shapes from a wide range of printable materials. However, most of the materials employed so far are static and do not provide any intrinsic programmability or pattern‐forming capability. Here, a low‐cost 3D bioprinting approach is developed, which is based on a commercially available extrusion printer that utilizes a DNA‐functionalized bioink, which allows to combine concepts developed in dynamic DNA nanotechnology with additive patterning techniques. Hybridization between diffusing DNA signal strands and immobilized anchor strands can be used to tune diffusion properties of the signals, or to localize DNA strands within the gel in a sequence‐programmable manner. Furthermore, strand displacement mechanisms can be used to direct simple pattern formation processes and to control the availability of DNA sequences at specific locations. To support printing of DNA‐functionalized gel voxels at arbitrary positions, an open source python script that generates machine‐readable code (GCODE) from simple vector graphics input is developed.
DNA nanotechnology enables sequence‐programmable assembly and operation of nanoscale structures, devices, and systems. In order to harness DNA’s molecular programming power also at larger length scales, however, novel strategies are required. Here, a bioprinting approach is developed for DNA‐functionalized bioinks that facilitate sequence‐programmable assembly and diffusion processes in millimeter‐scaled 3D‐printed gel structures. |
doi_str_mv | 10.1002/smll.202001815 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2418728225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430578422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5375-d6ef85b76b62f369dcb25c48ba60da8e2213a83f6b2b1bd98ddc2e71a29e76753</originalsourceid><addsrcrecordid>eNqNkM9u1DAQhy0EoqVw5YgicUFCux2P49g5Vrv0jxRKpcI5cmxn5SqxS5wILScegWfkSXC620XiAiePx99v5PkIeU1hSQHwNPZdt0RAACopf0KOaUHZopBYPj3UFI7IixjvABjFXDwnRwx5KYDCMTE3Q9gMqu-d32Rr17ZTdMFnypusClp17rsa50Zos_X1WXbrNl51MXM-Y-tfP37eDM6P1sxv6XY-eT3Tcyw1L7cmDbddfEmetSllX-3PE_Ll_MPn1eWi-nRxtTqrFpozwRemsK3kjSiaAltWlEY3yHUuG1WAUdIiUqYka4sGG9qYUhqj0QqqsLSiEJydkHe7ufdD-DrZONa9i9p2nfI2TLHGnEqBEnFG3_6F3oVpmHdLFAMuZI6YqOWO0kOIcbBtfT-4Xg3bmkI9-69n__XBfwq82Y-dmt6aA_4oPAFyB3yzTWijdtZre8AAgOdJBctTBXTlxgf7qzD5MUXf_3800eWedp3d_uPf9e3HqvqzxW-3IrPe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430578422</pqid></control><display><type>article</type><title>Programming Diffusion and Localization of DNA Signals in 3D‐Printed DNA‐Functionalized Hydrogels</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Müller, Julia ; Jäkel, Anna Christina ; Schwarz, Dominic ; Aufinger, Lukas ; Simmel, Friedrich C.</creator><creatorcontrib>Müller, Julia ; Jäkel, Anna Christina ; Schwarz, Dominic ; Aufinger, Lukas ; Simmel, Friedrich C.</creatorcontrib><description>Additive manufacturing enables the generation of 3D structures with predefined shapes from a wide range of printable materials. However, most of the materials employed so far are static and do not provide any intrinsic programmability or pattern‐forming capability. Here, a low‐cost 3D bioprinting approach is developed, which is based on a commercially available extrusion printer that utilizes a DNA‐functionalized bioink, which allows to combine concepts developed in dynamic DNA nanotechnology with additive patterning techniques. Hybridization between diffusing DNA signal strands and immobilized anchor strands can be used to tune diffusion properties of the signals, or to localize DNA strands within the gel in a sequence‐programmable manner. Furthermore, strand displacement mechanisms can be used to direct simple pattern formation processes and to control the availability of DNA sequences at specific locations. To support printing of DNA‐functionalized gel voxels at arbitrary positions, an open source python script that generates machine‐readable code (GCODE) from simple vector graphics input is developed.
DNA nanotechnology enables sequence‐programmable assembly and operation of nanoscale structures, devices, and systems. In order to harness DNA’s molecular programming power also at larger length scales, however, novel strategies are required. Here, a bioprinting approach is developed for DNA‐functionalized bioinks that facilitate sequence‐programmable assembly and diffusion processes in millimeter‐scaled 3D‐printed gel structures.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202001815</identifier><identifier>PMID: 32597010</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Bioengineering ; bioprinting ; Chemistry ; Chemistry, Multidisciplinary ; Chemistry, Physical ; Deoxyribonucleic acid ; DNA ; DNA nanotechnology ; Extrusion ; Gene sequencing ; Hydrogels ; Localization ; Materials Science ; Materials Science, Multidisciplinary ; molecular programming ; Nanoscience & Nanotechnology ; Nanotechnology ; Patterning ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Programming languages ; Science & Technology ; Science & Technology - Other Topics ; Strands ; Technology ; Three dimensional printing</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2020-08, Vol.16 (31), p.e2001815-n/a, Article 2001815</ispartof><rights>2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>18</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000543753400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c5375-d6ef85b76b62f369dcb25c48ba60da8e2213a83f6b2b1bd98ddc2e71a29e76753</citedby><cites>FETCH-LOGICAL-c5375-d6ef85b76b62f369dcb25c48ba60da8e2213a83f6b2b1bd98ddc2e71a29e76753</cites><orcidid>0000-0003-3829-3446</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202001815$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202001815$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32597010$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Müller, Julia</creatorcontrib><creatorcontrib>Jäkel, Anna Christina</creatorcontrib><creatorcontrib>Schwarz, Dominic</creatorcontrib><creatorcontrib>Aufinger, Lukas</creatorcontrib><creatorcontrib>Simmel, Friedrich C.</creatorcontrib><title>Programming Diffusion and Localization of DNA Signals in 3D‐Printed DNA‐Functionalized Hydrogels</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>SMALL</addtitle><addtitle>Small</addtitle><description>Additive manufacturing enables the generation of 3D structures with predefined shapes from a wide range of printable materials. However, most of the materials employed so far are static and do not provide any intrinsic programmability or pattern‐forming capability. Here, a low‐cost 3D bioprinting approach is developed, which is based on a commercially available extrusion printer that utilizes a DNA‐functionalized bioink, which allows to combine concepts developed in dynamic DNA nanotechnology with additive patterning techniques. Hybridization between diffusing DNA signal strands and immobilized anchor strands can be used to tune diffusion properties of the signals, or to localize DNA strands within the gel in a sequence‐programmable manner. Furthermore, strand displacement mechanisms can be used to direct simple pattern formation processes and to control the availability of DNA sequences at specific locations. To support printing of DNA‐functionalized gel voxels at arbitrary positions, an open source python script that generates machine‐readable code (GCODE) from simple vector graphics input is developed.
DNA nanotechnology enables sequence‐programmable assembly and operation of nanoscale structures, devices, and systems. In order to harness DNA’s molecular programming power also at larger length scales, however, novel strategies are required. Here, a bioprinting approach is developed for DNA‐functionalized bioinks that facilitate sequence‐programmable assembly and diffusion processes in millimeter‐scaled 3D‐printed gel structures.</description><subject>Bioengineering</subject><subject>bioprinting</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chemistry, Physical</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA nanotechnology</subject><subject>Extrusion</subject><subject>Gene sequencing</subject><subject>Hydrogels</subject><subject>Localization</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>molecular programming</subject><subject>Nanoscience & Nanotechnology</subject><subject>Nanotechnology</subject><subject>Patterning</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Programming languages</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Strands</subject><subject>Technology</subject><subject>Three dimensional printing</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkM9u1DAQhy0EoqVw5YgicUFCux2P49g5Vrv0jxRKpcI5cmxn5SqxS5wILScegWfkSXC620XiAiePx99v5PkIeU1hSQHwNPZdt0RAACopf0KOaUHZopBYPj3UFI7IixjvABjFXDwnRwx5KYDCMTE3Q9gMqu-d32Rr17ZTdMFnypusClp17rsa50Zos_X1WXbrNl51MXM-Y-tfP37eDM6P1sxv6XY-eT3Tcyw1L7cmDbddfEmetSllX-3PE_Ll_MPn1eWi-nRxtTqrFpozwRemsK3kjSiaAltWlEY3yHUuG1WAUdIiUqYka4sGG9qYUhqj0QqqsLSiEJydkHe7ufdD-DrZONa9i9p2nfI2TLHGnEqBEnFG3_6F3oVpmHdLFAMuZI6YqOWO0kOIcbBtfT-4Xg3bmkI9-69n__XBfwq82Y-dmt6aA_4oPAFyB3yzTWijdtZre8AAgOdJBctTBXTlxgf7qzD5MUXf_3800eWedp3d_uPf9e3HqvqzxW-3IrPe</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Müller, Julia</creator><creator>Jäkel, Anna Christina</creator><creator>Schwarz, Dominic</creator><creator>Aufinger, Lukas</creator><creator>Simmel, Friedrich C.</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3829-3446</orcidid></search><sort><creationdate>20200801</creationdate><title>Programming Diffusion and Localization of DNA Signals in 3D‐Printed DNA‐Functionalized Hydrogels</title><author>Müller, Julia ; Jäkel, Anna Christina ; Schwarz, Dominic ; Aufinger, Lukas ; Simmel, Friedrich C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5375-d6ef85b76b62f369dcb25c48ba60da8e2213a83f6b2b1bd98ddc2e71a29e76753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bioengineering</topic><topic>bioprinting</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chemistry, Physical</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA nanotechnology</topic><topic>Extrusion</topic><topic>Gene sequencing</topic><topic>Hydrogels</topic><topic>Localization</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>molecular programming</topic><topic>Nanoscience & Nanotechnology</topic><topic>Nanotechnology</topic><topic>Patterning</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Programming languages</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Strands</topic><topic>Technology</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Müller, Julia</creatorcontrib><creatorcontrib>Jäkel, Anna Christina</creatorcontrib><creatorcontrib>Schwarz, Dominic</creatorcontrib><creatorcontrib>Aufinger, Lukas</creatorcontrib><creatorcontrib>Simmel, Friedrich C.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Müller, Julia</au><au>Jäkel, Anna Christina</au><au>Schwarz, Dominic</au><au>Aufinger, Lukas</au><au>Simmel, Friedrich C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Programming Diffusion and Localization of DNA Signals in 3D‐Printed DNA‐Functionalized Hydrogels</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><stitle>SMALL</stitle><addtitle>Small</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>16</volume><issue>31</issue><spage>e2001815</spage><epage>n/a</epage><pages>e2001815-n/a</pages><artnum>2001815</artnum><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Additive manufacturing enables the generation of 3D structures with predefined shapes from a wide range of printable materials. However, most of the materials employed so far are static and do not provide any intrinsic programmability or pattern‐forming capability. Here, a low‐cost 3D bioprinting approach is developed, which is based on a commercially available extrusion printer that utilizes a DNA‐functionalized bioink, which allows to combine concepts developed in dynamic DNA nanotechnology with additive patterning techniques. Hybridization between diffusing DNA signal strands and immobilized anchor strands can be used to tune diffusion properties of the signals, or to localize DNA strands within the gel in a sequence‐programmable manner. Furthermore, strand displacement mechanisms can be used to direct simple pattern formation processes and to control the availability of DNA sequences at specific locations. To support printing of DNA‐functionalized gel voxels at arbitrary positions, an open source python script that generates machine‐readable code (GCODE) from simple vector graphics input is developed.
DNA nanotechnology enables sequence‐programmable assembly and operation of nanoscale structures, devices, and systems. In order to harness DNA’s molecular programming power also at larger length scales, however, novel strategies are required. Here, a bioprinting approach is developed for DNA‐functionalized bioinks that facilitate sequence‐programmable assembly and diffusion processes in millimeter‐scaled 3D‐printed gel structures.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><pmid>32597010</pmid><doi>10.1002/smll.202001815</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3829-3446</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2020-08, Vol.16 (31), p.e2001815-n/a, Article 2001815 |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2418728225 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Bioengineering bioprinting Chemistry Chemistry, Multidisciplinary Chemistry, Physical Deoxyribonucleic acid DNA DNA nanotechnology Extrusion Gene sequencing Hydrogels Localization Materials Science Materials Science, Multidisciplinary molecular programming Nanoscience & Nanotechnology Nanotechnology Patterning Physical Sciences Physics Physics, Applied Physics, Condensed Matter Programming languages Science & Technology Science & Technology - Other Topics Strands Technology Three dimensional printing |
title | Programming Diffusion and Localization of DNA Signals in 3D‐Printed DNA‐Functionalized Hydrogels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A36%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Programming%20Diffusion%20and%20Localization%20of%20DNA%20Signals%20in%203D%E2%80%90Printed%20DNA%E2%80%90Functionalized%20Hydrogels&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=M%C3%BCller,%20Julia&rft.date=2020-08-01&rft.volume=16&rft.issue=31&rft.spage=e2001815&rft.epage=n/a&rft.pages=e2001815-n/a&rft.artnum=2001815&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202001815&rft_dat=%3Cproquest_wiley%3E2430578422%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430578422&rft_id=info:pmid/32597010&rfr_iscdi=true |