Programming Diffusion and Localization of DNA Signals in 3D‐Printed DNA‐Functionalized Hydrogels

Additive manufacturing enables the generation of 3D structures with predefined shapes from a wide range of printable materials. However, most of the materials employed so far are static and do not provide any intrinsic programmability or pattern‐forming capability. Here, a low‐cost 3D bioprinting ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2020-08, Vol.16 (31), p.e2001815-n/a, Article 2001815
Hauptverfasser: Müller, Julia, Jäkel, Anna Christina, Schwarz, Dominic, Aufinger, Lukas, Simmel, Friedrich C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 31
container_start_page e2001815
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 16
creator Müller, Julia
Jäkel, Anna Christina
Schwarz, Dominic
Aufinger, Lukas
Simmel, Friedrich C.
description Additive manufacturing enables the generation of 3D structures with predefined shapes from a wide range of printable materials. However, most of the materials employed so far are static and do not provide any intrinsic programmability or pattern‐forming capability. Here, a low‐cost 3D bioprinting approach is developed, which is based on a commercially available extrusion printer that utilizes a DNA‐functionalized bioink, which allows to combine concepts developed in dynamic DNA nanotechnology with additive patterning techniques. Hybridization between diffusing DNA signal strands and immobilized anchor strands can be used to tune diffusion properties of the signals, or to localize DNA strands within the gel in a sequence‐programmable manner. Furthermore, strand displacement mechanisms can be used to direct simple pattern formation processes and to control the availability of DNA sequences at specific locations. To support printing of DNA‐functionalized gel voxels at arbitrary positions, an open source python script that generates machine‐readable code (GCODE) from simple vector graphics input is developed. DNA nanotechnology enables sequence‐programmable assembly and operation of nanoscale structures, devices, and systems. In order to harness DNA’s molecular programming power also at larger length scales, however, novel strategies are required. Here, a bioprinting approach is developed for DNA‐functionalized bioinks that facilitate sequence‐programmable assembly and diffusion processes in millimeter‐scaled 3D‐printed gel structures.
doi_str_mv 10.1002/smll.202001815
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2418728225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430578422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5375-d6ef85b76b62f369dcb25c48ba60da8e2213a83f6b2b1bd98ddc2e71a29e76753</originalsourceid><addsrcrecordid>eNqNkM9u1DAQhy0EoqVw5YgicUFCux2P49g5Vrv0jxRKpcI5cmxn5SqxS5wILScegWfkSXC620XiAiePx99v5PkIeU1hSQHwNPZdt0RAACopf0KOaUHZopBYPj3UFI7IixjvABjFXDwnRwx5KYDCMTE3Q9gMqu-d32Rr17ZTdMFnypusClp17rsa50Zos_X1WXbrNl51MXM-Y-tfP37eDM6P1sxv6XY-eT3Tcyw1L7cmDbddfEmetSllX-3PE_Ll_MPn1eWi-nRxtTqrFpozwRemsK3kjSiaAltWlEY3yHUuG1WAUdIiUqYka4sGG9qYUhqj0QqqsLSiEJydkHe7ufdD-DrZONa9i9p2nfI2TLHGnEqBEnFG3_6F3oVpmHdLFAMuZI6YqOWO0kOIcbBtfT-4Xg3bmkI9-69n__XBfwq82Y-dmt6aA_4oPAFyB3yzTWijdtZre8AAgOdJBctTBXTlxgf7qzD5MUXf_3800eWedp3d_uPf9e3HqvqzxW-3IrPe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430578422</pqid></control><display><type>article</type><title>Programming Diffusion and Localization of DNA Signals in 3D‐Printed DNA‐Functionalized Hydrogels</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Müller, Julia ; Jäkel, Anna Christina ; Schwarz, Dominic ; Aufinger, Lukas ; Simmel, Friedrich C.</creator><creatorcontrib>Müller, Julia ; Jäkel, Anna Christina ; Schwarz, Dominic ; Aufinger, Lukas ; Simmel, Friedrich C.</creatorcontrib><description>Additive manufacturing enables the generation of 3D structures with predefined shapes from a wide range of printable materials. However, most of the materials employed so far are static and do not provide any intrinsic programmability or pattern‐forming capability. Here, a low‐cost 3D bioprinting approach is developed, which is based on a commercially available extrusion printer that utilizes a DNA‐functionalized bioink, which allows to combine concepts developed in dynamic DNA nanotechnology with additive patterning techniques. Hybridization between diffusing DNA signal strands and immobilized anchor strands can be used to tune diffusion properties of the signals, or to localize DNA strands within the gel in a sequence‐programmable manner. Furthermore, strand displacement mechanisms can be used to direct simple pattern formation processes and to control the availability of DNA sequences at specific locations. To support printing of DNA‐functionalized gel voxels at arbitrary positions, an open source python script that generates machine‐readable code (GCODE) from simple vector graphics input is developed. DNA nanotechnology enables sequence‐programmable assembly and operation of nanoscale structures, devices, and systems. In order to harness DNA’s molecular programming power also at larger length scales, however, novel strategies are required. Here, a bioprinting approach is developed for DNA‐functionalized bioinks that facilitate sequence‐programmable assembly and diffusion processes in millimeter‐scaled 3D‐printed gel structures.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202001815</identifier><identifier>PMID: 32597010</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Bioengineering ; bioprinting ; Chemistry ; Chemistry, Multidisciplinary ; Chemistry, Physical ; Deoxyribonucleic acid ; DNA ; DNA nanotechnology ; Extrusion ; Gene sequencing ; Hydrogels ; Localization ; Materials Science ; Materials Science, Multidisciplinary ; molecular programming ; Nanoscience &amp; Nanotechnology ; Nanotechnology ; Patterning ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Programming languages ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Strands ; Technology ; Three dimensional printing</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2020-08, Vol.16 (31), p.e2001815-n/a, Article 2001815</ispartof><rights>2020 The Authors. Published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 The Authors. Published by WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>18</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000543753400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c5375-d6ef85b76b62f369dcb25c48ba60da8e2213a83f6b2b1bd98ddc2e71a29e76753</citedby><cites>FETCH-LOGICAL-c5375-d6ef85b76b62f369dcb25c48ba60da8e2213a83f6b2b1bd98ddc2e71a29e76753</cites><orcidid>0000-0003-3829-3446</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202001815$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202001815$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32597010$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Müller, Julia</creatorcontrib><creatorcontrib>Jäkel, Anna Christina</creatorcontrib><creatorcontrib>Schwarz, Dominic</creatorcontrib><creatorcontrib>Aufinger, Lukas</creatorcontrib><creatorcontrib>Simmel, Friedrich C.</creatorcontrib><title>Programming Diffusion and Localization of DNA Signals in 3D‐Printed DNA‐Functionalized Hydrogels</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>SMALL</addtitle><addtitle>Small</addtitle><description>Additive manufacturing enables the generation of 3D structures with predefined shapes from a wide range of printable materials. However, most of the materials employed so far are static and do not provide any intrinsic programmability or pattern‐forming capability. Here, a low‐cost 3D bioprinting approach is developed, which is based on a commercially available extrusion printer that utilizes a DNA‐functionalized bioink, which allows to combine concepts developed in dynamic DNA nanotechnology with additive patterning techniques. Hybridization between diffusing DNA signal strands and immobilized anchor strands can be used to tune diffusion properties of the signals, or to localize DNA strands within the gel in a sequence‐programmable manner. Furthermore, strand displacement mechanisms can be used to direct simple pattern formation processes and to control the availability of DNA sequences at specific locations. To support printing of DNA‐functionalized gel voxels at arbitrary positions, an open source python script that generates machine‐readable code (GCODE) from simple vector graphics input is developed. DNA nanotechnology enables sequence‐programmable assembly and operation of nanoscale structures, devices, and systems. In order to harness DNA’s molecular programming power also at larger length scales, however, novel strategies are required. Here, a bioprinting approach is developed for DNA‐functionalized bioinks that facilitate sequence‐programmable assembly and diffusion processes in millimeter‐scaled 3D‐printed gel structures.</description><subject>Bioengineering</subject><subject>bioprinting</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chemistry, Physical</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA nanotechnology</subject><subject>Extrusion</subject><subject>Gene sequencing</subject><subject>Hydrogels</subject><subject>Localization</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>molecular programming</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Nanotechnology</subject><subject>Patterning</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Programming languages</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Strands</subject><subject>Technology</subject><subject>Three dimensional printing</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkM9u1DAQhy0EoqVw5YgicUFCux2P49g5Vrv0jxRKpcI5cmxn5SqxS5wILScegWfkSXC620XiAiePx99v5PkIeU1hSQHwNPZdt0RAACopf0KOaUHZopBYPj3UFI7IixjvABjFXDwnRwx5KYDCMTE3Q9gMqu-d32Rr17ZTdMFnypusClp17rsa50Zos_X1WXbrNl51MXM-Y-tfP37eDM6P1sxv6XY-eT3Tcyw1L7cmDbddfEmetSllX-3PE_Ll_MPn1eWi-nRxtTqrFpozwRemsK3kjSiaAltWlEY3yHUuG1WAUdIiUqYka4sGG9qYUhqj0QqqsLSiEJydkHe7ufdD-DrZONa9i9p2nfI2TLHGnEqBEnFG3_6F3oVpmHdLFAMuZI6YqOWO0kOIcbBtfT-4Xg3bmkI9-69n__XBfwq82Y-dmt6aA_4oPAFyB3yzTWijdtZre8AAgOdJBctTBXTlxgf7qzD5MUXf_3800eWedp3d_uPf9e3HqvqzxW-3IrPe</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Müller, Julia</creator><creator>Jäkel, Anna Christina</creator><creator>Schwarz, Dominic</creator><creator>Aufinger, Lukas</creator><creator>Simmel, Friedrich C.</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3829-3446</orcidid></search><sort><creationdate>20200801</creationdate><title>Programming Diffusion and Localization of DNA Signals in 3D‐Printed DNA‐Functionalized Hydrogels</title><author>Müller, Julia ; Jäkel, Anna Christina ; Schwarz, Dominic ; Aufinger, Lukas ; Simmel, Friedrich C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5375-d6ef85b76b62f369dcb25c48ba60da8e2213a83f6b2b1bd98ddc2e71a29e76753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bioengineering</topic><topic>bioprinting</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chemistry, Physical</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA nanotechnology</topic><topic>Extrusion</topic><topic>Gene sequencing</topic><topic>Hydrogels</topic><topic>Localization</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>molecular programming</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Nanotechnology</topic><topic>Patterning</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Programming languages</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Strands</topic><topic>Technology</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Müller, Julia</creatorcontrib><creatorcontrib>Jäkel, Anna Christina</creatorcontrib><creatorcontrib>Schwarz, Dominic</creatorcontrib><creatorcontrib>Aufinger, Lukas</creatorcontrib><creatorcontrib>Simmel, Friedrich C.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Müller, Julia</au><au>Jäkel, Anna Christina</au><au>Schwarz, Dominic</au><au>Aufinger, Lukas</au><au>Simmel, Friedrich C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Programming Diffusion and Localization of DNA Signals in 3D‐Printed DNA‐Functionalized Hydrogels</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><stitle>SMALL</stitle><addtitle>Small</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>16</volume><issue>31</issue><spage>e2001815</spage><epage>n/a</epage><pages>e2001815-n/a</pages><artnum>2001815</artnum><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Additive manufacturing enables the generation of 3D structures with predefined shapes from a wide range of printable materials. However, most of the materials employed so far are static and do not provide any intrinsic programmability or pattern‐forming capability. Here, a low‐cost 3D bioprinting approach is developed, which is based on a commercially available extrusion printer that utilizes a DNA‐functionalized bioink, which allows to combine concepts developed in dynamic DNA nanotechnology with additive patterning techniques. Hybridization between diffusing DNA signal strands and immobilized anchor strands can be used to tune diffusion properties of the signals, or to localize DNA strands within the gel in a sequence‐programmable manner. Furthermore, strand displacement mechanisms can be used to direct simple pattern formation processes and to control the availability of DNA sequences at specific locations. To support printing of DNA‐functionalized gel voxels at arbitrary positions, an open source python script that generates machine‐readable code (GCODE) from simple vector graphics input is developed. DNA nanotechnology enables sequence‐programmable assembly and operation of nanoscale structures, devices, and systems. In order to harness DNA’s molecular programming power also at larger length scales, however, novel strategies are required. Here, a bioprinting approach is developed for DNA‐functionalized bioinks that facilitate sequence‐programmable assembly and diffusion processes in millimeter‐scaled 3D‐printed gel structures.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><pmid>32597010</pmid><doi>10.1002/smll.202001815</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3829-3446</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2020-08, Vol.16 (31), p.e2001815-n/a, Article 2001815
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2418728225
source Wiley Online Library Journals Frontfile Complete
subjects Bioengineering
bioprinting
Chemistry
Chemistry, Multidisciplinary
Chemistry, Physical
Deoxyribonucleic acid
DNA
DNA nanotechnology
Extrusion
Gene sequencing
Hydrogels
Localization
Materials Science
Materials Science, Multidisciplinary
molecular programming
Nanoscience & Nanotechnology
Nanotechnology
Patterning
Physical Sciences
Physics
Physics, Applied
Physics, Condensed Matter
Programming languages
Science & Technology
Science & Technology - Other Topics
Strands
Technology
Three dimensional printing
title Programming Diffusion and Localization of DNA Signals in 3D‐Printed DNA‐Functionalized Hydrogels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A36%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Programming%20Diffusion%20and%20Localization%20of%20DNA%20Signals%20in%203D%E2%80%90Printed%20DNA%E2%80%90Functionalized%20Hydrogels&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=M%C3%BCller,%20Julia&rft.date=2020-08-01&rft.volume=16&rft.issue=31&rft.spage=e2001815&rft.epage=n/a&rft.pages=e2001815-n/a&rft.artnum=2001815&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202001815&rft_dat=%3Cproquest_wiley%3E2430578422%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430578422&rft_id=info:pmid/32597010&rfr_iscdi=true