Determination of snowpack properties from satellite passive microwave measurements

The use of satellite microwave data to determine snowpack properties is investigated through calculation of theoretical microwave brightness temperatures and comparison of the computed brightness temperatures with actual satellite microwave measurements. Archived data from the Nimbus-5 and Nimbus-6...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing of environment 1984-01, Vol.15 (1), p.1-20
Hauptverfasser: Burke, Hsiao-Hua K, Bowley, Clinton J, Barnes, James C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 1
container_start_page 1
container_title Remote sensing of environment
container_volume 15
creator Burke, Hsiao-Hua K
Bowley, Clinton J
Barnes, James C
description The use of satellite microwave data to determine snowpack properties is investigated through calculation of theoretical microwave brightness temperatures and comparison of the computed brightness temperatures with actual satellite microwave measurements. Archived data from the Nimbus-5 and Nimbus-6 Electrically Scanning Microwave Radiometers (ESMR), as well as data from the Nimbus-7 Scanning Multifrequency Microwave Radiometer (SMMR), are analyzed for a study area in the north-central United States. The results of the investigation indicate that snow boundaries can usually be defined by the 37-GHz or 18 (19) GHz data because of the sharp decrease in brightness temperature when going from land to a snow surface. For dry snow conditions, the 37 GHz data display a decrease in brightness temperature with snow depth due to the stronger volume scattering effect of the deeper snow; at 18–19 GHz, the sensitivity to snow depth is not as significant. The onset of snowmelt can be determined at both microwave frequencies investigated (18–19 GHz and 37 GHz) because of the significant increase in the brightness temperature with melting due to the decrease in volume scattering that occurs in the presence of free water.
doi_str_mv 10.1016/0034-4257(84)90048-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_24182675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0034425784900488</els_id><sourcerecordid>24182675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-f582adb538c55aa05eba48ebc1f8721419fe4dd4ad33bf96053c9b5537c695613</originalsourceid><addsrcrecordid>eNqNkU2LFDEQhoMoOK7-A5E-iOihNekkneQiyPoJC4K651Cdrkh0utOmMrv47804yx7FU-rwVOWtpxh7LPhLwcX4inOpejVo89yqF45zZXt7h-2ENa7nhqu7bHeL3GcPiH5wLrQ1Yse-vMWKZUkr1JTXLseO1ny9QfjZbSVvWGpC6mLJS0dQcb9PFbsNiNIVdksKJV_DsUKgQ8EF10oP2b0Ie8JHN-8Zu3z_7tv5x_7i84dP528u-qCErX3UdoB50tIGrQG4xgmUxSmIaM0glHAR1TwrmKWcohu5lsFNWksTRqdHIc_Ys9PcFvTXAan6JVFoEWHFfCA_tG-G0ej_AY0xUjVQncC2FlHB6LeSFii_veD-aNofNfqjRm-V_2va29b29GY-UIB9LLCGRLe9bhSOW9ewJycsQvbwvTTk8qtwVrdjmFHJBrw-AdisXSUsnkLCNeCcCobq55z-HeQPKPicMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24177734</pqid></control><display><type>article</type><title>Determination of snowpack properties from satellite passive microwave measurements</title><source>Access via ScienceDirect (Elsevier)</source><creator>Burke, Hsiao-Hua K ; Bowley, Clinton J ; Barnes, James C</creator><creatorcontrib>Burke, Hsiao-Hua K ; Bowley, Clinton J ; Barnes, James C ; United States. Agricultural Research Service. Southern Region</creatorcontrib><description>The use of satellite microwave data to determine snowpack properties is investigated through calculation of theoretical microwave brightness temperatures and comparison of the computed brightness temperatures with actual satellite microwave measurements. Archived data from the Nimbus-5 and Nimbus-6 Electrically Scanning Microwave Radiometers (ESMR), as well as data from the Nimbus-7 Scanning Multifrequency Microwave Radiometer (SMMR), are analyzed for a study area in the north-central United States. The results of the investigation indicate that snow boundaries can usually be defined by the 37-GHz or 18 (19) GHz data because of the sharp decrease in brightness temperature when going from land to a snow surface. For dry snow conditions, the 37 GHz data display a decrease in brightness temperature with snow depth due to the stronger volume scattering effect of the deeper snow; at 18–19 GHz, the sensitivity to snow depth is not as significant. The onset of snowmelt can be determined at both microwave frequencies investigated (18–19 GHz and 37 GHz) because of the significant increase in the brightness temperature with melting due to the decrease in volume scattering that occurs in the presence of free water.</description><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1879-0704</identifier><identifier>DOI: 10.1016/0034-4257(84)90048-8</identifier><identifier>CODEN: RSEEA7</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Snow. Ice. Glaciers</subject><ispartof>Remote sensing of environment, 1984-01, Vol.15 (1), p.1-20</ispartof><rights>1984</rights><rights>1984 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-f582adb538c55aa05eba48ebc1f8721419fe4dd4ad33bf96053c9b5537c695613</citedby><cites>FETCH-LOGICAL-c418t-f582adb538c55aa05eba48ebc1f8721419fe4dd4ad33bf96053c9b5537c695613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0034-4257(84)90048-8$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=9619089$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Burke, Hsiao-Hua K</creatorcontrib><creatorcontrib>Bowley, Clinton J</creatorcontrib><creatorcontrib>Barnes, James C</creatorcontrib><creatorcontrib>United States. Agricultural Research Service. Southern Region</creatorcontrib><title>Determination of snowpack properties from satellite passive microwave measurements</title><title>Remote sensing of environment</title><description>The use of satellite microwave data to determine snowpack properties is investigated through calculation of theoretical microwave brightness temperatures and comparison of the computed brightness temperatures with actual satellite microwave measurements. Archived data from the Nimbus-5 and Nimbus-6 Electrically Scanning Microwave Radiometers (ESMR), as well as data from the Nimbus-7 Scanning Multifrequency Microwave Radiometer (SMMR), are analyzed for a study area in the north-central United States. The results of the investigation indicate that snow boundaries can usually be defined by the 37-GHz or 18 (19) GHz data because of the sharp decrease in brightness temperature when going from land to a snow surface. For dry snow conditions, the 37 GHz data display a decrease in brightness temperature with snow depth due to the stronger volume scattering effect of the deeper snow; at 18–19 GHz, the sensitivity to snow depth is not as significant. The onset of snowmelt can be determined at both microwave frequencies investigated (18–19 GHz and 37 GHz) because of the significant increase in the brightness temperature with melting due to the decrease in volume scattering that occurs in the presence of free water.</description><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Snow. Ice. Glaciers</subject><issn>0034-4257</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNqNkU2LFDEQhoMoOK7-A5E-iOihNekkneQiyPoJC4K651Cdrkh0utOmMrv47804yx7FU-rwVOWtpxh7LPhLwcX4inOpejVo89yqF45zZXt7h-2ENa7nhqu7bHeL3GcPiH5wLrQ1Yse-vMWKZUkr1JTXLseO1ny9QfjZbSVvWGpC6mLJS0dQcb9PFbsNiNIVdksKJV_DsUKgQ8EF10oP2b0Ie8JHN-8Zu3z_7tv5x_7i84dP528u-qCErX3UdoB50tIGrQG4xgmUxSmIaM0glHAR1TwrmKWcohu5lsFNWksTRqdHIc_Ys9PcFvTXAan6JVFoEWHFfCA_tG-G0ej_AY0xUjVQncC2FlHB6LeSFii_veD-aNofNfqjRm-V_2va29b29GY-UIB9LLCGRLe9bhSOW9ewJycsQvbwvTTk8qtwVrdjmFHJBrw-AdisXSUsnkLCNeCcCobq55z-HeQPKPicMQ</recordid><startdate>19840101</startdate><enddate>19840101</enddate><creator>Burke, Hsiao-Hua K</creator><creator>Bowley, Clinton J</creator><creator>Barnes, James C</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>19840101</creationdate><title>Determination of snowpack properties from satellite passive microwave measurements</title><author>Burke, Hsiao-Hua K ; Bowley, Clinton J ; Barnes, James C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-f582adb538c55aa05eba48ebc1f8721419fe4dd4ad33bf96053c9b5537c695613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Snow. Ice. Glaciers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burke, Hsiao-Hua K</creatorcontrib><creatorcontrib>Bowley, Clinton J</creatorcontrib><creatorcontrib>Barnes, James C</creatorcontrib><creatorcontrib>United States. Agricultural Research Service. Southern Region</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>Remote sensing of environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burke, Hsiao-Hua K</au><au>Bowley, Clinton J</au><au>Barnes, James C</au><aucorp>United States. Agricultural Research Service. Southern Region</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of snowpack properties from satellite passive microwave measurements</atitle><jtitle>Remote sensing of environment</jtitle><date>1984-01-01</date><risdate>1984</risdate><volume>15</volume><issue>1</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><issn>0034-4257</issn><eissn>1879-0704</eissn><coden>RSEEA7</coden><abstract>The use of satellite microwave data to determine snowpack properties is investigated through calculation of theoretical microwave brightness temperatures and comparison of the computed brightness temperatures with actual satellite microwave measurements. Archived data from the Nimbus-5 and Nimbus-6 Electrically Scanning Microwave Radiometers (ESMR), as well as data from the Nimbus-7 Scanning Multifrequency Microwave Radiometer (SMMR), are analyzed for a study area in the north-central United States. The results of the investigation indicate that snow boundaries can usually be defined by the 37-GHz or 18 (19) GHz data because of the sharp decrease in brightness temperature when going from land to a snow surface. For dry snow conditions, the 37 GHz data display a decrease in brightness temperature with snow depth due to the stronger volume scattering effect of the deeper snow; at 18–19 GHz, the sensitivity to snow depth is not as significant. The onset of snowmelt can be determined at both microwave frequencies investigated (18–19 GHz and 37 GHz) because of the significant increase in the brightness temperature with melting due to the decrease in volume scattering that occurs in the presence of free water.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/0034-4257(84)90048-8</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0034-4257
ispartof Remote sensing of environment, 1984-01, Vol.15 (1), p.1-20
issn 0034-4257
1879-0704
language eng
recordid cdi_proquest_miscellaneous_24182675
source Access via ScienceDirect (Elsevier)
subjects Earth, ocean, space
Exact sciences and technology
External geophysics
Snow. Ice. Glaciers
title Determination of snowpack properties from satellite passive microwave measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A35%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20snowpack%20properties%20from%20satellite%20passive%20microwave%20measurements&rft.jtitle=Remote%20sensing%20of%20environment&rft.au=Burke,%20Hsiao-Hua%20K&rft.aucorp=United%20States.%20Agricultural%20Research%20Service.%20Southern%20Region&rft.date=1984-01-01&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.issn=0034-4257&rft.eissn=1879-0704&rft.coden=RSEEA7&rft_id=info:doi/10.1016/0034-4257(84)90048-8&rft_dat=%3Cproquest_cross%3E24182675%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24177734&rft_id=info:pmid/&rft_els_id=0034425784900488&rfr_iscdi=true