Interactive learning modules with 3D printed models improve student understanding of protein structure–function relationships
Ensuring undergraduate students become proficient in relating protein structure to biological function has important implications. With current two‐dimensional (2D) methods of teaching, students frequently develop misconceptions, including that proteins contain a lot of empty space, that bond angles...
Gespeichert in:
Veröffentlicht in: | Biochemistry and molecular biology education 2020-07, Vol.48 (4), p.356-368 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 368 |
---|---|
container_issue | 4 |
container_start_page | 356 |
container_title | Biochemistry and molecular biology education |
container_volume | 48 |
creator | Howell, Michelle E. Booth, Christine S. Sikich, Sharmin M. Helikar, Tomáš Dijk, Karin Roston, Rebecca L. Couch, Brian A. |
description | Ensuring undergraduate students become proficient in relating protein structure to biological function has important implications. With current two‐dimensional (2D) methods of teaching, students frequently develop misconceptions, including that proteins contain a lot of empty space, that bond angles for different amino acids can rotate equally, and that product inhibition is equivalent to allostery. To help students translate 2D images to 3D molecules and assign biochemical meaning to physical structures, we designed three 3D learning modules consisting of interactive activities with 3D printed models for amino acids, proteins, and allosteric regulation with coordinating pre‐ and post‐assessments. Module implementation resulted in normalized learning gains on module‐based assessments of 30% compared to 17% in a no‐module course and normalized learning gains on a comprehensive assessment of 19% compared to 3% in a no‐module course. This suggests that interacting with these modules helps students develop an improved ability to visualize and retain molecular structure and function. |
doi_str_mv | 10.1002/bmb.21362 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2418132894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1260848</ericid><sourcerecordid>2418132894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3252-d6deb6df8ae2a36398185ebd90952fb9fd5f1fe70aebe1697bb0e7ff8cb8167b3</originalsourceid><addsrcrecordid>eNp10btuFTEQAFALgUhyoeADQCvRhGITP_Zhl0kIEBREA_XKXo-Jo13vxQ-iVPAP_CFfwlw2pECi8shzPDPyEPKM0SNGKT82szniTHT8AdlnrVC1aLh6iHHT01qyvt0jByldU7Rd0z8me4K3ikpJ98n3i5Ah6jH7b1BNoGPw4Us1L7ZMkKobn68q8braRo_M7u5hSpWft3FBn3KxEHJVgoWYsg5293hx6JcMPiCIZcwlwq8fP10J2GUJVYRJ74J05bfpCXnk9JTg6d25IZ_fnH86e1dffnx7cXZyWY84K69tZ8F01kkNXItOKMlkC8YqqlrujHK2dcxBTzUYYJ3qjaHQOydHI1nXG7Ehh2tdHO1rgZSH2acRpkkHWEoaeMMkE1yqBunLf-j1UmLA6VDxVjR9g3RDXq1qjEtKEdyAnzTreDswOuy2MuBWhj9bQfvirmIxM9h7-XcNCJ6vAKIf79Pn7xnvqGwk5o_X_I2f4Pb_nYbTD6dry992mKRy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425347481</pqid></control><display><type>article</type><title>Interactive learning modules with 3D printed models improve student understanding of protein structure–function relationships</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>EBSCOhost Education Source</source><source>Alma/SFX Local Collection</source><creator>Howell, Michelle E. ; Booth, Christine S. ; Sikich, Sharmin M. ; Helikar, Tomáš ; Dijk, Karin ; Roston, Rebecca L. ; Couch, Brian A.</creator><creatorcontrib>Howell, Michelle E. ; Booth, Christine S. ; Sikich, Sharmin M. ; Helikar, Tomáš ; Dijk, Karin ; Roston, Rebecca L. ; Couch, Brian A.</creatorcontrib><description>Ensuring undergraduate students become proficient in relating protein structure to biological function has important implications. With current two‐dimensional (2D) methods of teaching, students frequently develop misconceptions, including that proteins contain a lot of empty space, that bond angles for different amino acids can rotate equally, and that product inhibition is equivalent to allostery. To help students translate 2D images to 3D molecules and assign biochemical meaning to physical structures, we designed three 3D learning modules consisting of interactive activities with 3D printed models for amino acids, proteins, and allosteric regulation with coordinating pre‐ and post‐assessments. Module implementation resulted in normalized learning gains on module‐based assessments of 30% compared to 17% in a no‐module course and normalized learning gains on a comprehensive assessment of 19% compared to 3% in a no‐module course. This suggests that interacting with these modules helps students develop an improved ability to visualize and retain molecular structure and function.</description><identifier>ISSN: 1470-8175</identifier><identifier>EISSN: 1539-3429</identifier><identifier>DOI: 10.1002/bmb.21362</identifier><identifier>PMID: 32590880</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>3D printing ; Achievement Gains ; Allosteric properties ; allosteric regulation ; Amino acids ; Biochemistry ; College Science ; Concept Formation ; Databases, Protein ; Education, Medical, Undergraduate - methods ; Educational Measurement ; Educational Technology ; Female ; Geometric Concepts ; Humans ; Imaging, Three-Dimensional - methods ; Interactive learning ; Learning ; Learning Modules ; Male ; Misconceptions ; Models, Anatomic ; model‐based learning ; Molecular Biology - education ; Molecular Structure ; molecular visualization ; Protein Conformation ; Protein structure ; protein structure–function ; Proteins - chemistry ; Proteins - metabolism ; Scientific Concepts ; Simulation Training - methods ; Spatial Ability ; Structure-Activity Relationship ; Structure-function relationships ; Student Improvement ; student misconceptions ; Students ; Teaching Methods ; Technology Uses in Education ; undergraduate ; Undergraduate Students</subject><ispartof>Biochemistry and molecular biology education, 2020-07, Vol.48 (4), p.356-368</ispartof><rights>2020 International Union of Biochemistry and Molecular Biology</rights><rights>2020 International Union of Biochemistry and Molecular Biology.</rights><rights>2020 The International Union of Biochemistry and Molecular Biology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3252-d6deb6df8ae2a36398185ebd90952fb9fd5f1fe70aebe1697bb0e7ff8cb8167b3</citedby><cites>FETCH-LOGICAL-c3252-d6deb6df8ae2a36398185ebd90952fb9fd5f1fe70aebe1697bb0e7ff8cb8167b3</cites><orcidid>0000-0001-7160-9751 ; 0000-0002-8748-2641 ; 0000-0001-6972-6561 ; 0000-0003-3653-1906</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbmb.21362$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbmb.21362$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1260848$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32590880$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Howell, Michelle E.</creatorcontrib><creatorcontrib>Booth, Christine S.</creatorcontrib><creatorcontrib>Sikich, Sharmin M.</creatorcontrib><creatorcontrib>Helikar, Tomáš</creatorcontrib><creatorcontrib>Dijk, Karin</creatorcontrib><creatorcontrib>Roston, Rebecca L.</creatorcontrib><creatorcontrib>Couch, Brian A.</creatorcontrib><title>Interactive learning modules with 3D printed models improve student understanding of protein structure–function relationships</title><title>Biochemistry and molecular biology education</title><addtitle>Biochem Mol Biol Educ</addtitle><description>Ensuring undergraduate students become proficient in relating protein structure to biological function has important implications. With current two‐dimensional (2D) methods of teaching, students frequently develop misconceptions, including that proteins contain a lot of empty space, that bond angles for different amino acids can rotate equally, and that product inhibition is equivalent to allostery. To help students translate 2D images to 3D molecules and assign biochemical meaning to physical structures, we designed three 3D learning modules consisting of interactive activities with 3D printed models for amino acids, proteins, and allosteric regulation with coordinating pre‐ and post‐assessments. Module implementation resulted in normalized learning gains on module‐based assessments of 30% compared to 17% in a no‐module course and normalized learning gains on a comprehensive assessment of 19% compared to 3% in a no‐module course. This suggests that interacting with these modules helps students develop an improved ability to visualize and retain molecular structure and function.</description><subject>3D printing</subject><subject>Achievement Gains</subject><subject>Allosteric properties</subject><subject>allosteric regulation</subject><subject>Amino acids</subject><subject>Biochemistry</subject><subject>College Science</subject><subject>Concept Formation</subject><subject>Databases, Protein</subject><subject>Education, Medical, Undergraduate - methods</subject><subject>Educational Measurement</subject><subject>Educational Technology</subject><subject>Female</subject><subject>Geometric Concepts</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Interactive learning</subject><subject>Learning</subject><subject>Learning Modules</subject><subject>Male</subject><subject>Misconceptions</subject><subject>Models, Anatomic</subject><subject>model‐based learning</subject><subject>Molecular Biology - education</subject><subject>Molecular Structure</subject><subject>molecular visualization</subject><subject>Protein Conformation</subject><subject>Protein structure</subject><subject>protein structure–function</subject><subject>Proteins - chemistry</subject><subject>Proteins - metabolism</subject><subject>Scientific Concepts</subject><subject>Simulation Training - methods</subject><subject>Spatial Ability</subject><subject>Structure-Activity Relationship</subject><subject>Structure-function relationships</subject><subject>Student Improvement</subject><subject>student misconceptions</subject><subject>Students</subject><subject>Teaching Methods</subject><subject>Technology Uses in Education</subject><subject>undergraduate</subject><subject>Undergraduate Students</subject><issn>1470-8175</issn><issn>1539-3429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10btuFTEQAFALgUhyoeADQCvRhGITP_Zhl0kIEBREA_XKXo-Jo13vxQ-iVPAP_CFfwlw2pECi8shzPDPyEPKM0SNGKT82szniTHT8AdlnrVC1aLh6iHHT01qyvt0jByldU7Rd0z8me4K3ikpJ98n3i5Ah6jH7b1BNoGPw4Us1L7ZMkKobn68q8braRo_M7u5hSpWft3FBn3KxEHJVgoWYsg5293hx6JcMPiCIZcwlwq8fP10J2GUJVYRJ74J05bfpCXnk9JTg6d25IZ_fnH86e1dffnx7cXZyWY84K69tZ8F01kkNXItOKMlkC8YqqlrujHK2dcxBTzUYYJ3qjaHQOydHI1nXG7Ehh2tdHO1rgZSH2acRpkkHWEoaeMMkE1yqBunLf-j1UmLA6VDxVjR9g3RDXq1qjEtKEdyAnzTreDswOuy2MuBWhj9bQfvirmIxM9h7-XcNCJ6vAKIf79Pn7xnvqGwk5o_X_I2f4Pb_nYbTD6dry992mKRy</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Howell, Michelle E.</creator><creator>Booth, Christine S.</creator><creator>Sikich, Sharmin M.</creator><creator>Helikar, Tomáš</creator><creator>Dijk, Karin</creator><creator>Roston, Rebecca L.</creator><creator>Couch, Brian A.</creator><general>John Wiley & Sons, Inc</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7160-9751</orcidid><orcidid>https://orcid.org/0000-0002-8748-2641</orcidid><orcidid>https://orcid.org/0000-0001-6972-6561</orcidid><orcidid>https://orcid.org/0000-0003-3653-1906</orcidid></search><sort><creationdate>202007</creationdate><title>Interactive learning modules with 3D printed models improve student understanding of protein structure–function relationships</title><author>Howell, Michelle E. ; Booth, Christine S. ; Sikich, Sharmin M. ; Helikar, Tomáš ; Dijk, Karin ; Roston, Rebecca L. ; Couch, Brian A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3252-d6deb6df8ae2a36398185ebd90952fb9fd5f1fe70aebe1697bb0e7ff8cb8167b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3D printing</topic><topic>Achievement Gains</topic><topic>Allosteric properties</topic><topic>allosteric regulation</topic><topic>Amino acids</topic><topic>Biochemistry</topic><topic>College Science</topic><topic>Concept Formation</topic><topic>Databases, Protein</topic><topic>Education, Medical, Undergraduate - methods</topic><topic>Educational Measurement</topic><topic>Educational Technology</topic><topic>Female</topic><topic>Geometric Concepts</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Interactive learning</topic><topic>Learning</topic><topic>Learning Modules</topic><topic>Male</topic><topic>Misconceptions</topic><topic>Models, Anatomic</topic><topic>model‐based learning</topic><topic>Molecular Biology - education</topic><topic>Molecular Structure</topic><topic>molecular visualization</topic><topic>Protein Conformation</topic><topic>Protein structure</topic><topic>protein structure–function</topic><topic>Proteins - chemistry</topic><topic>Proteins - metabolism</topic><topic>Scientific Concepts</topic><topic>Simulation Training - methods</topic><topic>Spatial Ability</topic><topic>Structure-Activity Relationship</topic><topic>Structure-function relationships</topic><topic>Student Improvement</topic><topic>student misconceptions</topic><topic>Students</topic><topic>Teaching Methods</topic><topic>Technology Uses in Education</topic><topic>undergraduate</topic><topic>Undergraduate Students</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Howell, Michelle E.</creatorcontrib><creatorcontrib>Booth, Christine S.</creatorcontrib><creatorcontrib>Sikich, Sharmin M.</creatorcontrib><creatorcontrib>Helikar, Tomáš</creatorcontrib><creatorcontrib>Dijk, Karin</creatorcontrib><creatorcontrib>Roston, Rebecca L.</creatorcontrib><creatorcontrib>Couch, Brian A.</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry and molecular biology education</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Howell, Michelle E.</au><au>Booth, Christine S.</au><au>Sikich, Sharmin M.</au><au>Helikar, Tomáš</au><au>Dijk, Karin</au><au>Roston, Rebecca L.</au><au>Couch, Brian A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1260848</ericid><atitle>Interactive learning modules with 3D printed models improve student understanding of protein structure–function relationships</atitle><jtitle>Biochemistry and molecular biology education</jtitle><addtitle>Biochem Mol Biol Educ</addtitle><date>2020-07</date><risdate>2020</risdate><volume>48</volume><issue>4</issue><spage>356</spage><epage>368</epage><pages>356-368</pages><issn>1470-8175</issn><eissn>1539-3429</eissn><abstract>Ensuring undergraduate students become proficient in relating protein structure to biological function has important implications. With current two‐dimensional (2D) methods of teaching, students frequently develop misconceptions, including that proteins contain a lot of empty space, that bond angles for different amino acids can rotate equally, and that product inhibition is equivalent to allostery. To help students translate 2D images to 3D molecules and assign biochemical meaning to physical structures, we designed three 3D learning modules consisting of interactive activities with 3D printed models for amino acids, proteins, and allosteric regulation with coordinating pre‐ and post‐assessments. Module implementation resulted in normalized learning gains on module‐based assessments of 30% compared to 17% in a no‐module course and normalized learning gains on a comprehensive assessment of 19% compared to 3% in a no‐module course. This suggests that interacting with these modules helps students develop an improved ability to visualize and retain molecular structure and function.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>32590880</pmid><doi>10.1002/bmb.21362</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7160-9751</orcidid><orcidid>https://orcid.org/0000-0002-8748-2641</orcidid><orcidid>https://orcid.org/0000-0001-6972-6561</orcidid><orcidid>https://orcid.org/0000-0003-3653-1906</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1470-8175 |
ispartof | Biochemistry and molecular biology education, 2020-07, Vol.48 (4), p.356-368 |
issn | 1470-8175 1539-3429 |
language | eng |
recordid | cdi_proquest_miscellaneous_2418132894 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; EBSCOhost Education Source; Alma/SFX Local Collection |
subjects | 3D printing Achievement Gains Allosteric properties allosteric regulation Amino acids Biochemistry College Science Concept Formation Databases, Protein Education, Medical, Undergraduate - methods Educational Measurement Educational Technology Female Geometric Concepts Humans Imaging, Three-Dimensional - methods Interactive learning Learning Learning Modules Male Misconceptions Models, Anatomic model‐based learning Molecular Biology - education Molecular Structure molecular visualization Protein Conformation Protein structure protein structure–function Proteins - chemistry Proteins - metabolism Scientific Concepts Simulation Training - methods Spatial Ability Structure-Activity Relationship Structure-function relationships Student Improvement student misconceptions Students Teaching Methods Technology Uses in Education undergraduate Undergraduate Students |
title | Interactive learning modules with 3D printed models improve student understanding of protein structure–function relationships |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A46%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactive%20learning%20modules%20with%203D%20printed%20models%20improve%20student%20understanding%20of%20protein%20structure%E2%80%93function%20relationships&rft.jtitle=Biochemistry%20and%20molecular%20biology%20education&rft.au=Howell,%20Michelle%20E.&rft.date=2020-07&rft.volume=48&rft.issue=4&rft.spage=356&rft.epage=368&rft.pages=356-368&rft.issn=1470-8175&rft.eissn=1539-3429&rft_id=info:doi/10.1002/bmb.21362&rft_dat=%3Cproquest_cross%3E2418132894%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425347481&rft_id=info:pmid/32590880&rft_ericid=EJ1260848&rfr_iscdi=true |