Interactive learning modules with 3D printed models improve student understanding of protein structure–function relationships

Ensuring undergraduate students become proficient in relating protein structure to biological function has important implications. With current two‐dimensional (2D) methods of teaching, students frequently develop misconceptions, including that proteins contain a lot of empty space, that bond angles...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry and molecular biology education 2020-07, Vol.48 (4), p.356-368
Hauptverfasser: Howell, Michelle E., Booth, Christine S., Sikich, Sharmin M., Helikar, Tomáš, Dijk, Karin, Roston, Rebecca L., Couch, Brian A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 368
container_issue 4
container_start_page 356
container_title Biochemistry and molecular biology education
container_volume 48
creator Howell, Michelle E.
Booth, Christine S.
Sikich, Sharmin M.
Helikar, Tomáš
Dijk, Karin
Roston, Rebecca L.
Couch, Brian A.
description Ensuring undergraduate students become proficient in relating protein structure to biological function has important implications. With current two‐dimensional (2D) methods of teaching, students frequently develop misconceptions, including that proteins contain a lot of empty space, that bond angles for different amino acids can rotate equally, and that product inhibition is equivalent to allostery. To help students translate 2D images to 3D molecules and assign biochemical meaning to physical structures, we designed three 3D learning modules consisting of interactive activities with 3D printed models for amino acids, proteins, and allosteric regulation with coordinating pre‐ and post‐assessments. Module implementation resulted in normalized learning gains on module‐based assessments of 30% compared to 17% in a no‐module course and normalized learning gains on a comprehensive assessment of 19% compared to 3% in a no‐module course. This suggests that interacting with these modules helps students develop an improved ability to visualize and retain molecular structure and function.
doi_str_mv 10.1002/bmb.21362
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2418132894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1260848</ericid><sourcerecordid>2418132894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3252-d6deb6df8ae2a36398185ebd90952fb9fd5f1fe70aebe1697bb0e7ff8cb8167b3</originalsourceid><addsrcrecordid>eNp10btuFTEQAFALgUhyoeADQCvRhGITP_Zhl0kIEBREA_XKXo-Jo13vxQ-iVPAP_CFfwlw2pECi8shzPDPyEPKM0SNGKT82szniTHT8AdlnrVC1aLh6iHHT01qyvt0jByldU7Rd0z8me4K3ikpJ98n3i5Ah6jH7b1BNoGPw4Us1L7ZMkKobn68q8braRo_M7u5hSpWft3FBn3KxEHJVgoWYsg5293hx6JcMPiCIZcwlwq8fP10J2GUJVYRJ74J05bfpCXnk9JTg6d25IZ_fnH86e1dffnx7cXZyWY84K69tZ8F01kkNXItOKMlkC8YqqlrujHK2dcxBTzUYYJ3qjaHQOydHI1nXG7Ehh2tdHO1rgZSH2acRpkkHWEoaeMMkE1yqBunLf-j1UmLA6VDxVjR9g3RDXq1qjEtKEdyAnzTreDswOuy2MuBWhj9bQfvirmIxM9h7-XcNCJ6vAKIf79Pn7xnvqGwk5o_X_I2f4Pb_nYbTD6dry992mKRy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425347481</pqid></control><display><type>article</type><title>Interactive learning modules with 3D printed models improve student understanding of protein structure–function relationships</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>EBSCOhost Education Source</source><source>Alma/SFX Local Collection</source><creator>Howell, Michelle E. ; Booth, Christine S. ; Sikich, Sharmin M. ; Helikar, Tomáš ; Dijk, Karin ; Roston, Rebecca L. ; Couch, Brian A.</creator><creatorcontrib>Howell, Michelle E. ; Booth, Christine S. ; Sikich, Sharmin M. ; Helikar, Tomáš ; Dijk, Karin ; Roston, Rebecca L. ; Couch, Brian A.</creatorcontrib><description>Ensuring undergraduate students become proficient in relating protein structure to biological function has important implications. With current two‐dimensional (2D) methods of teaching, students frequently develop misconceptions, including that proteins contain a lot of empty space, that bond angles for different amino acids can rotate equally, and that product inhibition is equivalent to allostery. To help students translate 2D images to 3D molecules and assign biochemical meaning to physical structures, we designed three 3D learning modules consisting of interactive activities with 3D printed models for amino acids, proteins, and allosteric regulation with coordinating pre‐ and post‐assessments. Module implementation resulted in normalized learning gains on module‐based assessments of 30% compared to 17% in a no‐module course and normalized learning gains on a comprehensive assessment of 19% compared to 3% in a no‐module course. This suggests that interacting with these modules helps students develop an improved ability to visualize and retain molecular structure and function.</description><identifier>ISSN: 1470-8175</identifier><identifier>EISSN: 1539-3429</identifier><identifier>DOI: 10.1002/bmb.21362</identifier><identifier>PMID: 32590880</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>3D printing ; Achievement Gains ; Allosteric properties ; allosteric regulation ; Amino acids ; Biochemistry ; College Science ; Concept Formation ; Databases, Protein ; Education, Medical, Undergraduate - methods ; Educational Measurement ; Educational Technology ; Female ; Geometric Concepts ; Humans ; Imaging, Three-Dimensional - methods ; Interactive learning ; Learning ; Learning Modules ; Male ; Misconceptions ; Models, Anatomic ; model‐based learning ; Molecular Biology - education ; Molecular Structure ; molecular visualization ; Protein Conformation ; Protein structure ; protein structure–function ; Proteins - chemistry ; Proteins - metabolism ; Scientific Concepts ; Simulation Training - methods ; Spatial Ability ; Structure-Activity Relationship ; Structure-function relationships ; Student Improvement ; student misconceptions ; Students ; Teaching Methods ; Technology Uses in Education ; undergraduate ; Undergraduate Students</subject><ispartof>Biochemistry and molecular biology education, 2020-07, Vol.48 (4), p.356-368</ispartof><rights>2020 International Union of Biochemistry and Molecular Biology</rights><rights>2020 International Union of Biochemistry and Molecular Biology.</rights><rights>2020 The International Union of Biochemistry and Molecular Biology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3252-d6deb6df8ae2a36398185ebd90952fb9fd5f1fe70aebe1697bb0e7ff8cb8167b3</citedby><cites>FETCH-LOGICAL-c3252-d6deb6df8ae2a36398185ebd90952fb9fd5f1fe70aebe1697bb0e7ff8cb8167b3</cites><orcidid>0000-0001-7160-9751 ; 0000-0002-8748-2641 ; 0000-0001-6972-6561 ; 0000-0003-3653-1906</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbmb.21362$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbmb.21362$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1260848$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32590880$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Howell, Michelle E.</creatorcontrib><creatorcontrib>Booth, Christine S.</creatorcontrib><creatorcontrib>Sikich, Sharmin M.</creatorcontrib><creatorcontrib>Helikar, Tomáš</creatorcontrib><creatorcontrib>Dijk, Karin</creatorcontrib><creatorcontrib>Roston, Rebecca L.</creatorcontrib><creatorcontrib>Couch, Brian A.</creatorcontrib><title>Interactive learning modules with 3D printed models improve student understanding of protein structure–function relationships</title><title>Biochemistry and molecular biology education</title><addtitle>Biochem Mol Biol Educ</addtitle><description>Ensuring undergraduate students become proficient in relating protein structure to biological function has important implications. With current two‐dimensional (2D) methods of teaching, students frequently develop misconceptions, including that proteins contain a lot of empty space, that bond angles for different amino acids can rotate equally, and that product inhibition is equivalent to allostery. To help students translate 2D images to 3D molecules and assign biochemical meaning to physical structures, we designed three 3D learning modules consisting of interactive activities with 3D printed models for amino acids, proteins, and allosteric regulation with coordinating pre‐ and post‐assessments. Module implementation resulted in normalized learning gains on module‐based assessments of 30% compared to 17% in a no‐module course and normalized learning gains on a comprehensive assessment of 19% compared to 3% in a no‐module course. This suggests that interacting with these modules helps students develop an improved ability to visualize and retain molecular structure and function.</description><subject>3D printing</subject><subject>Achievement Gains</subject><subject>Allosteric properties</subject><subject>allosteric regulation</subject><subject>Amino acids</subject><subject>Biochemistry</subject><subject>College Science</subject><subject>Concept Formation</subject><subject>Databases, Protein</subject><subject>Education, Medical, Undergraduate - methods</subject><subject>Educational Measurement</subject><subject>Educational Technology</subject><subject>Female</subject><subject>Geometric Concepts</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Interactive learning</subject><subject>Learning</subject><subject>Learning Modules</subject><subject>Male</subject><subject>Misconceptions</subject><subject>Models, Anatomic</subject><subject>model‐based learning</subject><subject>Molecular Biology - education</subject><subject>Molecular Structure</subject><subject>molecular visualization</subject><subject>Protein Conformation</subject><subject>Protein structure</subject><subject>protein structure–function</subject><subject>Proteins - chemistry</subject><subject>Proteins - metabolism</subject><subject>Scientific Concepts</subject><subject>Simulation Training - methods</subject><subject>Spatial Ability</subject><subject>Structure-Activity Relationship</subject><subject>Structure-function relationships</subject><subject>Student Improvement</subject><subject>student misconceptions</subject><subject>Students</subject><subject>Teaching Methods</subject><subject>Technology Uses in Education</subject><subject>undergraduate</subject><subject>Undergraduate Students</subject><issn>1470-8175</issn><issn>1539-3429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10btuFTEQAFALgUhyoeADQCvRhGITP_Zhl0kIEBREA_XKXo-Jo13vxQ-iVPAP_CFfwlw2pECi8shzPDPyEPKM0SNGKT82szniTHT8AdlnrVC1aLh6iHHT01qyvt0jByldU7Rd0z8me4K3ikpJ98n3i5Ah6jH7b1BNoGPw4Us1L7ZMkKobn68q8braRo_M7u5hSpWft3FBn3KxEHJVgoWYsg5293hx6JcMPiCIZcwlwq8fP10J2GUJVYRJ74J05bfpCXnk9JTg6d25IZ_fnH86e1dffnx7cXZyWY84K69tZ8F01kkNXItOKMlkC8YqqlrujHK2dcxBTzUYYJ3qjaHQOydHI1nXG7Ehh2tdHO1rgZSH2acRpkkHWEoaeMMkE1yqBunLf-j1UmLA6VDxVjR9g3RDXq1qjEtKEdyAnzTreDswOuy2MuBWhj9bQfvirmIxM9h7-XcNCJ6vAKIf79Pn7xnvqGwk5o_X_I2f4Pb_nYbTD6dry992mKRy</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Howell, Michelle E.</creator><creator>Booth, Christine S.</creator><creator>Sikich, Sharmin M.</creator><creator>Helikar, Tomáš</creator><creator>Dijk, Karin</creator><creator>Roston, Rebecca L.</creator><creator>Couch, Brian A.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7160-9751</orcidid><orcidid>https://orcid.org/0000-0002-8748-2641</orcidid><orcidid>https://orcid.org/0000-0001-6972-6561</orcidid><orcidid>https://orcid.org/0000-0003-3653-1906</orcidid></search><sort><creationdate>202007</creationdate><title>Interactive learning modules with 3D printed models improve student understanding of protein structure–function relationships</title><author>Howell, Michelle E. ; Booth, Christine S. ; Sikich, Sharmin M. ; Helikar, Tomáš ; Dijk, Karin ; Roston, Rebecca L. ; Couch, Brian A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3252-d6deb6df8ae2a36398185ebd90952fb9fd5f1fe70aebe1697bb0e7ff8cb8167b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3D printing</topic><topic>Achievement Gains</topic><topic>Allosteric properties</topic><topic>allosteric regulation</topic><topic>Amino acids</topic><topic>Biochemistry</topic><topic>College Science</topic><topic>Concept Formation</topic><topic>Databases, Protein</topic><topic>Education, Medical, Undergraduate - methods</topic><topic>Educational Measurement</topic><topic>Educational Technology</topic><topic>Female</topic><topic>Geometric Concepts</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Interactive learning</topic><topic>Learning</topic><topic>Learning Modules</topic><topic>Male</topic><topic>Misconceptions</topic><topic>Models, Anatomic</topic><topic>model‐based learning</topic><topic>Molecular Biology - education</topic><topic>Molecular Structure</topic><topic>molecular visualization</topic><topic>Protein Conformation</topic><topic>Protein structure</topic><topic>protein structure–function</topic><topic>Proteins - chemistry</topic><topic>Proteins - metabolism</topic><topic>Scientific Concepts</topic><topic>Simulation Training - methods</topic><topic>Spatial Ability</topic><topic>Structure-Activity Relationship</topic><topic>Structure-function relationships</topic><topic>Student Improvement</topic><topic>student misconceptions</topic><topic>Students</topic><topic>Teaching Methods</topic><topic>Technology Uses in Education</topic><topic>undergraduate</topic><topic>Undergraduate Students</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Howell, Michelle E.</creatorcontrib><creatorcontrib>Booth, Christine S.</creatorcontrib><creatorcontrib>Sikich, Sharmin M.</creatorcontrib><creatorcontrib>Helikar, Tomáš</creatorcontrib><creatorcontrib>Dijk, Karin</creatorcontrib><creatorcontrib>Roston, Rebecca L.</creatorcontrib><creatorcontrib>Couch, Brian A.</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry and molecular biology education</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Howell, Michelle E.</au><au>Booth, Christine S.</au><au>Sikich, Sharmin M.</au><au>Helikar, Tomáš</au><au>Dijk, Karin</au><au>Roston, Rebecca L.</au><au>Couch, Brian A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1260848</ericid><atitle>Interactive learning modules with 3D printed models improve student understanding of protein structure–function relationships</atitle><jtitle>Biochemistry and molecular biology education</jtitle><addtitle>Biochem Mol Biol Educ</addtitle><date>2020-07</date><risdate>2020</risdate><volume>48</volume><issue>4</issue><spage>356</spage><epage>368</epage><pages>356-368</pages><issn>1470-8175</issn><eissn>1539-3429</eissn><abstract>Ensuring undergraduate students become proficient in relating protein structure to biological function has important implications. With current two‐dimensional (2D) methods of teaching, students frequently develop misconceptions, including that proteins contain a lot of empty space, that bond angles for different amino acids can rotate equally, and that product inhibition is equivalent to allostery. To help students translate 2D images to 3D molecules and assign biochemical meaning to physical structures, we designed three 3D learning modules consisting of interactive activities with 3D printed models for amino acids, proteins, and allosteric regulation with coordinating pre‐ and post‐assessments. Module implementation resulted in normalized learning gains on module‐based assessments of 30% compared to 17% in a no‐module course and normalized learning gains on a comprehensive assessment of 19% compared to 3% in a no‐module course. This suggests that interacting with these modules helps students develop an improved ability to visualize and retain molecular structure and function.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>32590880</pmid><doi>10.1002/bmb.21362</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7160-9751</orcidid><orcidid>https://orcid.org/0000-0002-8748-2641</orcidid><orcidid>https://orcid.org/0000-0001-6972-6561</orcidid><orcidid>https://orcid.org/0000-0003-3653-1906</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1470-8175
ispartof Biochemistry and molecular biology education, 2020-07, Vol.48 (4), p.356-368
issn 1470-8175
1539-3429
language eng
recordid cdi_proquest_miscellaneous_2418132894
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; EBSCOhost Education Source; Alma/SFX Local Collection
subjects 3D printing
Achievement Gains
Allosteric properties
allosteric regulation
Amino acids
Biochemistry
College Science
Concept Formation
Databases, Protein
Education, Medical, Undergraduate - methods
Educational Measurement
Educational Technology
Female
Geometric Concepts
Humans
Imaging, Three-Dimensional - methods
Interactive learning
Learning
Learning Modules
Male
Misconceptions
Models, Anatomic
model‐based learning
Molecular Biology - education
Molecular Structure
molecular visualization
Protein Conformation
Protein structure
protein structure–function
Proteins - chemistry
Proteins - metabolism
Scientific Concepts
Simulation Training - methods
Spatial Ability
Structure-Activity Relationship
Structure-function relationships
Student Improvement
student misconceptions
Students
Teaching Methods
Technology Uses in Education
undergraduate
Undergraduate Students
title Interactive learning modules with 3D printed models improve student understanding of protein structure–function relationships
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A46%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactive%20learning%20modules%20with%203D%20printed%20models%20improve%20student%20understanding%20of%20protein%20structure%E2%80%93function%20relationships&rft.jtitle=Biochemistry%20and%20molecular%20biology%20education&rft.au=Howell,%20Michelle%20E.&rft.date=2020-07&rft.volume=48&rft.issue=4&rft.spage=356&rft.epage=368&rft.pages=356-368&rft.issn=1470-8175&rft.eissn=1539-3429&rft_id=info:doi/10.1002/bmb.21362&rft_dat=%3Cproquest_cross%3E2418132894%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425347481&rft_id=info:pmid/32590880&rft_ericid=EJ1260848&rfr_iscdi=true