Modeling escape success in terrestrial predator–prey interactions

Synopsis Prey species often modify their foraging and reproductive behaviors to avoid encounters with predators; yet once they are detected, survival depends on out-running, out-maneuvering, or fighting off the predator. Though predation attempts involve at least two individuals—namely, a predator a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integrative and comparative biology 2020-08, Vol.60 (2), p.497-508
Hauptverfasser: Wilson, Robbie S, Pavlic, Theodore P, Wheatley, Rebecca, Niehaus, Amanda C, Levy, Ofir
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 508
container_issue 2
container_start_page 497
container_title Integrative and comparative biology
container_volume 60
creator Wilson, Robbie S
Pavlic, Theodore P
Wheatley, Rebecca
Niehaus, Amanda C
Levy, Ofir
description Synopsis Prey species often modify their foraging and reproductive behaviors to avoid encounters with predators; yet once they are detected, survival depends on out-running, out-maneuvering, or fighting off the predator. Though predation attempts involve at least two individuals—namely, a predator and its prey—studies of escape performance typically measure a single trait (e.g., sprint speed) in the prey species only. Here, we develop a theoretical model in which the likelihood of escape is determined by the prey animal’s tactics (i.e., path trajectory) and its acceleration, top speed, agility, and deceleration relative to the performance capabilities of a predator. The model shows that acceleration, top speed, and agility are all important determinants of escape performance, and because speed and agility are biomechanically related to size, smaller prey with higher agility should force larger predators to run along curved paths that do not allow them to use their superior speeds. Our simulations provide clear predictions for the path and speed a prey animal should choose when escaping from predators of different sizes (thus, biomechanical constraints) and could be used to explore the dynamics between predators and prey.
doi_str_mv 10.1093/icb/icaa070
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2418131400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/icb/icaa070</oup_id><sourcerecordid>2418131400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-b31570f0c9dcf47279d620d553c230a3c42cf4d7b4be938e82fad9eb270dd0a63</originalsourceid><addsrcrecordid>eNp9kE1KxEAQhRtRcBxdeYGsRJBo9U-mJ0sZ_IMRN7puOt0VacmkY1eymJ138IaexB7GtYuiHvU-isdj7JzDNYda3gTX5LEWNBywGa8qXWoQ8nCnFWS9kMfshOgDIJvAZ2z1HD12oX8vkJwdsKDJOSQqQl-MmBLSmILtiiGht2NMP1_fWW6znV3rxhB7OmVHre0Iz_72nL3d372uHsv1y8PT6nZdOinVWDaSVxpacLV3rdJC134hwFeVdEKClU6JfPe6UQ3WcolL0VpfYyM0eA92Iefscv93SPFzysnMJpDDrrM9xomMUHzJJVcAGb3aoy5FooStGVLY2LQ1HMyuKpOrMn9VZfpiT8dp-Bf8BfCObAM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418131400</pqid></control><display><type>article</type><title>Modeling escape success in terrestrial predator–prey interactions</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Wilson, Robbie S ; Pavlic, Theodore P ; Wheatley, Rebecca ; Niehaus, Amanda C ; Levy, Ofir</creator><creatorcontrib>Wilson, Robbie S ; Pavlic, Theodore P ; Wheatley, Rebecca ; Niehaus, Amanda C ; Levy, Ofir</creatorcontrib><description>Synopsis Prey species often modify their foraging and reproductive behaviors to avoid encounters with predators; yet once they are detected, survival depends on out-running, out-maneuvering, or fighting off the predator. Though predation attempts involve at least two individuals—namely, a predator and its prey—studies of escape performance typically measure a single trait (e.g., sprint speed) in the prey species only. Here, we develop a theoretical model in which the likelihood of escape is determined by the prey animal’s tactics (i.e., path trajectory) and its acceleration, top speed, agility, and deceleration relative to the performance capabilities of a predator. The model shows that acceleration, top speed, and agility are all important determinants of escape performance, and because speed and agility are biomechanically related to size, smaller prey with higher agility should force larger predators to run along curved paths that do not allow them to use their superior speeds. Our simulations provide clear predictions for the path and speed a prey animal should choose when escaping from predators of different sizes (thus, biomechanical constraints) and could be used to explore the dynamics between predators and prey.</description><identifier>ISSN: 1540-7063</identifier><identifier>EISSN: 1557-7023</identifier><identifier>DOI: 10.1093/icb/icaa070</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Integrative and comparative biology, 2020-08, Vol.60 (2), p.497-508</ispartof><rights>The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-b31570f0c9dcf47279d620d553c230a3c42cf4d7b4be938e82fad9eb270dd0a63</citedby><cites>FETCH-LOGICAL-c334t-b31570f0c9dcf47279d620d553c230a3c42cf4d7b4be938e82fad9eb270dd0a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Wilson, Robbie S</creatorcontrib><creatorcontrib>Pavlic, Theodore P</creatorcontrib><creatorcontrib>Wheatley, Rebecca</creatorcontrib><creatorcontrib>Niehaus, Amanda C</creatorcontrib><creatorcontrib>Levy, Ofir</creatorcontrib><title>Modeling escape success in terrestrial predator–prey interactions</title><title>Integrative and comparative biology</title><description>Synopsis Prey species often modify their foraging and reproductive behaviors to avoid encounters with predators; yet once they are detected, survival depends on out-running, out-maneuvering, or fighting off the predator. Though predation attempts involve at least two individuals—namely, a predator and its prey—studies of escape performance typically measure a single trait (e.g., sprint speed) in the prey species only. Here, we develop a theoretical model in which the likelihood of escape is determined by the prey animal’s tactics (i.e., path trajectory) and its acceleration, top speed, agility, and deceleration relative to the performance capabilities of a predator. The model shows that acceleration, top speed, and agility are all important determinants of escape performance, and because speed and agility are biomechanically related to size, smaller prey with higher agility should force larger predators to run along curved paths that do not allow them to use their superior speeds. Our simulations provide clear predictions for the path and speed a prey animal should choose when escaping from predators of different sizes (thus, biomechanical constraints) and could be used to explore the dynamics between predators and prey.</description><issn>1540-7063</issn><issn>1557-7023</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1KxEAQhRtRcBxdeYGsRJBo9U-mJ0sZ_IMRN7puOt0VacmkY1eymJ138IaexB7GtYuiHvU-isdj7JzDNYda3gTX5LEWNBywGa8qXWoQ8nCnFWS9kMfshOgDIJvAZ2z1HD12oX8vkJwdsKDJOSQqQl-MmBLSmILtiiGht2NMP1_fWW6znV3rxhB7OmVHre0Iz_72nL3d372uHsv1y8PT6nZdOinVWDaSVxpacLV3rdJC134hwFeVdEKClU6JfPe6UQ3WcolL0VpfYyM0eA92Iefscv93SPFzysnMJpDDrrM9xomMUHzJJVcAGb3aoy5FooStGVLY2LQ1HMyuKpOrMn9VZfpiT8dp-Bf8BfCObAM</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Wilson, Robbie S</creator><creator>Pavlic, Theodore P</creator><creator>Wheatley, Rebecca</creator><creator>Niehaus, Amanda C</creator><creator>Levy, Ofir</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20200801</creationdate><title>Modeling escape success in terrestrial predator–prey interactions</title><author>Wilson, Robbie S ; Pavlic, Theodore P ; Wheatley, Rebecca ; Niehaus, Amanda C ; Levy, Ofir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-b31570f0c9dcf47279d620d553c230a3c42cf4d7b4be938e82fad9eb270dd0a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilson, Robbie S</creatorcontrib><creatorcontrib>Pavlic, Theodore P</creatorcontrib><creatorcontrib>Wheatley, Rebecca</creatorcontrib><creatorcontrib>Niehaus, Amanda C</creatorcontrib><creatorcontrib>Levy, Ofir</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Integrative and comparative biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilson, Robbie S</au><au>Pavlic, Theodore P</au><au>Wheatley, Rebecca</au><au>Niehaus, Amanda C</au><au>Levy, Ofir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling escape success in terrestrial predator–prey interactions</atitle><jtitle>Integrative and comparative biology</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>60</volume><issue>2</issue><spage>497</spage><epage>508</epage><pages>497-508</pages><issn>1540-7063</issn><eissn>1557-7023</eissn><abstract>Synopsis Prey species often modify their foraging and reproductive behaviors to avoid encounters with predators; yet once they are detected, survival depends on out-running, out-maneuvering, or fighting off the predator. Though predation attempts involve at least two individuals—namely, a predator and its prey—studies of escape performance typically measure a single trait (e.g., sprint speed) in the prey species only. Here, we develop a theoretical model in which the likelihood of escape is determined by the prey animal’s tactics (i.e., path trajectory) and its acceleration, top speed, agility, and deceleration relative to the performance capabilities of a predator. The model shows that acceleration, top speed, and agility are all important determinants of escape performance, and because speed and agility are biomechanically related to size, smaller prey with higher agility should force larger predators to run along curved paths that do not allow them to use their superior speeds. Our simulations provide clear predictions for the path and speed a prey animal should choose when escaping from predators of different sizes (thus, biomechanical constraints) and could be used to explore the dynamics between predators and prey.</abstract><pub>Oxford University Press</pub><doi>10.1093/icb/icaa070</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1540-7063
ispartof Integrative and comparative biology, 2020-08, Vol.60 (2), p.497-508
issn 1540-7063
1557-7023
language eng
recordid cdi_proquest_miscellaneous_2418131400
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection
title Modeling escape success in terrestrial predator–prey interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A51%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20escape%20success%20in%20terrestrial%20predator%E2%80%93prey%20interactions&rft.jtitle=Integrative%20and%20comparative%20biology&rft.au=Wilson,%20Robbie%20S&rft.date=2020-08-01&rft.volume=60&rft.issue=2&rft.spage=497&rft.epage=508&rft.pages=497-508&rft.issn=1540-7063&rft.eissn=1557-7023&rft_id=info:doi/10.1093/icb/icaa070&rft_dat=%3Cproquest_cross%3E2418131400%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2418131400&rft_id=info:pmid/&rft_oup_id=10.1093/icb/icaa070&rfr_iscdi=true