Modeling escape success in terrestrial predator–prey interactions
Synopsis Prey species often modify their foraging and reproductive behaviors to avoid encounters with predators; yet once they are detected, survival depends on out-running, out-maneuvering, or fighting off the predator. Though predation attempts involve at least two individuals—namely, a predator a...
Gespeichert in:
Veröffentlicht in: | Integrative and comparative biology 2020-08, Vol.60 (2), p.497-508 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 508 |
---|---|
container_issue | 2 |
container_start_page | 497 |
container_title | Integrative and comparative biology |
container_volume | 60 |
creator | Wilson, Robbie S Pavlic, Theodore P Wheatley, Rebecca Niehaus, Amanda C Levy, Ofir |
description | Synopsis
Prey species often modify their foraging and reproductive behaviors to avoid encounters with predators; yet once they are detected, survival depends on out-running, out-maneuvering, or fighting off the predator. Though predation attempts involve at least two individuals—namely, a predator and its prey—studies of escape performance typically measure a single trait (e.g., sprint speed) in the prey species only. Here, we develop a theoretical model in which the likelihood of escape is determined by the prey animal’s tactics (i.e., path trajectory) and its acceleration, top speed, agility, and deceleration relative to the performance capabilities of a predator. The model shows that acceleration, top speed, and agility are all important determinants of escape performance, and because speed and agility are biomechanically related to size, smaller prey with higher agility should force larger predators to run along curved paths that do not allow them to use their superior speeds. Our simulations provide clear predictions for the path and speed a prey animal should choose when escaping from predators of different sizes (thus, biomechanical constraints) and could be used to explore the dynamics between predators and prey. |
doi_str_mv | 10.1093/icb/icaa070 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2418131400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/icb/icaa070</oup_id><sourcerecordid>2418131400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-b31570f0c9dcf47279d620d553c230a3c42cf4d7b4be938e82fad9eb270dd0a63</originalsourceid><addsrcrecordid>eNp9kE1KxEAQhRtRcBxdeYGsRJBo9U-mJ0sZ_IMRN7puOt0VacmkY1eymJ138IaexB7GtYuiHvU-isdj7JzDNYda3gTX5LEWNBywGa8qXWoQ8nCnFWS9kMfshOgDIJvAZ2z1HD12oX8vkJwdsKDJOSQqQl-MmBLSmILtiiGht2NMP1_fWW6znV3rxhB7OmVHre0Iz_72nL3d372uHsv1y8PT6nZdOinVWDaSVxpacLV3rdJC134hwFeVdEKClU6JfPe6UQ3WcolL0VpfYyM0eA92Iefscv93SPFzysnMJpDDrrM9xomMUHzJJVcAGb3aoy5FooStGVLY2LQ1HMyuKpOrMn9VZfpiT8dp-Bf8BfCObAM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418131400</pqid></control><display><type>article</type><title>Modeling escape success in terrestrial predator–prey interactions</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Wilson, Robbie S ; Pavlic, Theodore P ; Wheatley, Rebecca ; Niehaus, Amanda C ; Levy, Ofir</creator><creatorcontrib>Wilson, Robbie S ; Pavlic, Theodore P ; Wheatley, Rebecca ; Niehaus, Amanda C ; Levy, Ofir</creatorcontrib><description>Synopsis
Prey species often modify their foraging and reproductive behaviors to avoid encounters with predators; yet once they are detected, survival depends on out-running, out-maneuvering, or fighting off the predator. Though predation attempts involve at least two individuals—namely, a predator and its prey—studies of escape performance typically measure a single trait (e.g., sprint speed) in the prey species only. Here, we develop a theoretical model in which the likelihood of escape is determined by the prey animal’s tactics (i.e., path trajectory) and its acceleration, top speed, agility, and deceleration relative to the performance capabilities of a predator. The model shows that acceleration, top speed, and agility are all important determinants of escape performance, and because speed and agility are biomechanically related to size, smaller prey with higher agility should force larger predators to run along curved paths that do not allow them to use their superior speeds. Our simulations provide clear predictions for the path and speed a prey animal should choose when escaping from predators of different sizes (thus, biomechanical constraints) and could be used to explore the dynamics between predators and prey.</description><identifier>ISSN: 1540-7063</identifier><identifier>EISSN: 1557-7023</identifier><identifier>DOI: 10.1093/icb/icaa070</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Integrative and comparative biology, 2020-08, Vol.60 (2), p.497-508</ispartof><rights>The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-b31570f0c9dcf47279d620d553c230a3c42cf4d7b4be938e82fad9eb270dd0a63</citedby><cites>FETCH-LOGICAL-c334t-b31570f0c9dcf47279d620d553c230a3c42cf4d7b4be938e82fad9eb270dd0a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Wilson, Robbie S</creatorcontrib><creatorcontrib>Pavlic, Theodore P</creatorcontrib><creatorcontrib>Wheatley, Rebecca</creatorcontrib><creatorcontrib>Niehaus, Amanda C</creatorcontrib><creatorcontrib>Levy, Ofir</creatorcontrib><title>Modeling escape success in terrestrial predator–prey interactions</title><title>Integrative and comparative biology</title><description>Synopsis
Prey species often modify their foraging and reproductive behaviors to avoid encounters with predators; yet once they are detected, survival depends on out-running, out-maneuvering, or fighting off the predator. Though predation attempts involve at least two individuals—namely, a predator and its prey—studies of escape performance typically measure a single trait (e.g., sprint speed) in the prey species only. Here, we develop a theoretical model in which the likelihood of escape is determined by the prey animal’s tactics (i.e., path trajectory) and its acceleration, top speed, agility, and deceleration relative to the performance capabilities of a predator. The model shows that acceleration, top speed, and agility are all important determinants of escape performance, and because speed and agility are biomechanically related to size, smaller prey with higher agility should force larger predators to run along curved paths that do not allow them to use their superior speeds. Our simulations provide clear predictions for the path and speed a prey animal should choose when escaping from predators of different sizes (thus, biomechanical constraints) and could be used to explore the dynamics between predators and prey.</description><issn>1540-7063</issn><issn>1557-7023</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1KxEAQhRtRcBxdeYGsRJBo9U-mJ0sZ_IMRN7puOt0VacmkY1eymJ138IaexB7GtYuiHvU-isdj7JzDNYda3gTX5LEWNBywGa8qXWoQ8nCnFWS9kMfshOgDIJvAZ2z1HD12oX8vkJwdsKDJOSQqQl-MmBLSmILtiiGht2NMP1_fWW6znV3rxhB7OmVHre0Iz_72nL3d372uHsv1y8PT6nZdOinVWDaSVxpacLV3rdJC134hwFeVdEKClU6JfPe6UQ3WcolL0VpfYyM0eA92Iefscv93SPFzysnMJpDDrrM9xomMUHzJJVcAGb3aoy5FooStGVLY2LQ1HMyuKpOrMn9VZfpiT8dp-Bf8BfCObAM</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Wilson, Robbie S</creator><creator>Pavlic, Theodore P</creator><creator>Wheatley, Rebecca</creator><creator>Niehaus, Amanda C</creator><creator>Levy, Ofir</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20200801</creationdate><title>Modeling escape success in terrestrial predator–prey interactions</title><author>Wilson, Robbie S ; Pavlic, Theodore P ; Wheatley, Rebecca ; Niehaus, Amanda C ; Levy, Ofir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-b31570f0c9dcf47279d620d553c230a3c42cf4d7b4be938e82fad9eb270dd0a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilson, Robbie S</creatorcontrib><creatorcontrib>Pavlic, Theodore P</creatorcontrib><creatorcontrib>Wheatley, Rebecca</creatorcontrib><creatorcontrib>Niehaus, Amanda C</creatorcontrib><creatorcontrib>Levy, Ofir</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Integrative and comparative biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilson, Robbie S</au><au>Pavlic, Theodore P</au><au>Wheatley, Rebecca</au><au>Niehaus, Amanda C</au><au>Levy, Ofir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling escape success in terrestrial predator–prey interactions</atitle><jtitle>Integrative and comparative biology</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>60</volume><issue>2</issue><spage>497</spage><epage>508</epage><pages>497-508</pages><issn>1540-7063</issn><eissn>1557-7023</eissn><abstract>Synopsis
Prey species often modify their foraging and reproductive behaviors to avoid encounters with predators; yet once they are detected, survival depends on out-running, out-maneuvering, or fighting off the predator. Though predation attempts involve at least two individuals—namely, a predator and its prey—studies of escape performance typically measure a single trait (e.g., sprint speed) in the prey species only. Here, we develop a theoretical model in which the likelihood of escape is determined by the prey animal’s tactics (i.e., path trajectory) and its acceleration, top speed, agility, and deceleration relative to the performance capabilities of a predator. The model shows that acceleration, top speed, and agility are all important determinants of escape performance, and because speed and agility are biomechanically related to size, smaller prey with higher agility should force larger predators to run along curved paths that do not allow them to use their superior speeds. Our simulations provide clear predictions for the path and speed a prey animal should choose when escaping from predators of different sizes (thus, biomechanical constraints) and could be used to explore the dynamics between predators and prey.</abstract><pub>Oxford University Press</pub><doi>10.1093/icb/icaa070</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1540-7063 |
ispartof | Integrative and comparative biology, 2020-08, Vol.60 (2), p.497-508 |
issn | 1540-7063 1557-7023 |
language | eng |
recordid | cdi_proquest_miscellaneous_2418131400 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection |
title | Modeling escape success in terrestrial predator–prey interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A51%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20escape%20success%20in%20terrestrial%20predator%E2%80%93prey%20interactions&rft.jtitle=Integrative%20and%20comparative%20biology&rft.au=Wilson,%20Robbie%20S&rft.date=2020-08-01&rft.volume=60&rft.issue=2&rft.spage=497&rft.epage=508&rft.pages=497-508&rft.issn=1540-7063&rft.eissn=1557-7023&rft_id=info:doi/10.1093/icb/icaa070&rft_dat=%3Cproquest_cross%3E2418131400%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2418131400&rft_id=info:pmid/&rft_oup_id=10.1093/icb/icaa070&rfr_iscdi=true |