Self-pinning of silica suspension droplets on hydrophobic surfaces

[Display omitted] Self-pinning induced by the aggregation of particles at the edge of a pinned drop is a pre-requisite for the coffee ring formation. The edge (three-phase contact line) of a suspension drop on a hydrophobic surface would depin and shrink in the early stage of evaporation process. It...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2020-11, Vol.579, p.212-220
Hauptverfasser: Yang, Kai-Chieh, Wang, Chieh, Hu, Ting-Yu, Lin, Hui-Ping, Cho, Kuan-Hung, Chen, Li-Jen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 220
container_issue
container_start_page 212
container_title Journal of colloid and interface science
container_volume 579
creator Yang, Kai-Chieh
Wang, Chieh
Hu, Ting-Yu
Lin, Hui-Ping
Cho, Kuan-Hung
Chen, Li-Jen
description [Display omitted] Self-pinning induced by the aggregation of particles at the edge of a pinned drop is a pre-requisite for the coffee ring formation. The edge (three-phase contact line) of a suspension drop on a hydrophobic surface would depin and shrink in the early stage of evaporation process. It is plausible to conjecture that the self-pinning of silica suspension drops depends on the particle size and surface property. Two substrate materials, the alkylsilane coated surfaces and the polydimethylsiloxane surfaces, and three different sizes of silica particles are used to explore the criterion of self-pinning of silica suspension drops on these hydrophobic surfaces. The evaporation process of droplets is recorded and further analyzed. The pinning concentration of silica suspensions of a fixed size linearly depends on the receding contact angle of the surface, irrelevant to the substrate material and initial particle concentration. The pinning concentration decreases along with an increase in particle size. In addition, the pinning concentrations of bi-dispersed silica (e.g. 400 + 1000 nm) suspensions have an excellent agreement with that of larger size (1000 nm) particle system. That implies that the larger particle dominates the system of bi-dispersed silica suspensions to initiate the self-pinning, further verified by SEM images.
doi_str_mv 10.1016/j.jcis.2020.06.059
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2418128268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979720308031</els_id><sourcerecordid>2418128268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-4730441e49397af2fe20a147577e404d57aa7b9b22be7db45cdb20cbd2c0b0773</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU89emmdpGmzAS-6-AULHtRzSNKpm9Jta6Yr7L-3ZT17mnfgeQfmYeyaQ8aBl7dN1vhAmQABGZQZFPqELTjoIlUc8lO2ABA81Uqrc3ZB1ABwXhR6wR7esa3TIXRd6L6Svk4otMHbhPY0YEeh75Iq9kOLIyVT3h7mbdu74Cck1tYjXbKz2raEV39zyT6fHj_WL-nm7fl1fb9JfZ7nYypVDlJylDrXytaiRgGWS1UohRJkVShrldNOCIeqcrLwlRPgXSU8OFAqX7Kb490h9t97pNHsAnlsW9thvycjJF9xsRLlakLFEfWxJ4pYmyGGnY0Hw8HMwkxjZmFmFmagNJOwqXR3LOH0xE_AaMgH7DxWIaIfTdWH_-q_UVt0fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418128268</pqid></control><display><type>article</type><title>Self-pinning of silica suspension droplets on hydrophobic surfaces</title><source>Elsevier ScienceDirect Journals</source><creator>Yang, Kai-Chieh ; Wang, Chieh ; Hu, Ting-Yu ; Lin, Hui-Ping ; Cho, Kuan-Hung ; Chen, Li-Jen</creator><creatorcontrib>Yang, Kai-Chieh ; Wang, Chieh ; Hu, Ting-Yu ; Lin, Hui-Ping ; Cho, Kuan-Hung ; Chen, Li-Jen</creatorcontrib><description>[Display omitted] Self-pinning induced by the aggregation of particles at the edge of a pinned drop is a pre-requisite for the coffee ring formation. The edge (three-phase contact line) of a suspension drop on a hydrophobic surface would depin and shrink in the early stage of evaporation process. It is plausible to conjecture that the self-pinning of silica suspension drops depends on the particle size and surface property. Two substrate materials, the alkylsilane coated surfaces and the polydimethylsiloxane surfaces, and three different sizes of silica particles are used to explore the criterion of self-pinning of silica suspension drops on these hydrophobic surfaces. The evaporation process of droplets is recorded and further analyzed. The pinning concentration of silica suspensions of a fixed size linearly depends on the receding contact angle of the surface, irrelevant to the substrate material and initial particle concentration. The pinning concentration decreases along with an increase in particle size. In addition, the pinning concentrations of bi-dispersed silica (e.g. 400 + 1000 nm) suspensions have an excellent agreement with that of larger size (1000 nm) particle system. That implies that the larger particle dominates the system of bi-dispersed silica suspensions to initiate the self-pinning, further verified by SEM images.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2020.06.059</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Coffee ring effect ; Hydrophobicity ; Receding contact angle ; Self-pinning</subject><ispartof>Journal of colloid and interface science, 2020-11, Vol.579, p.212-220</ispartof><rights>2020 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-4730441e49397af2fe20a147577e404d57aa7b9b22be7db45cdb20cbd2c0b0773</citedby><cites>FETCH-LOGICAL-c333t-4730441e49397af2fe20a147577e404d57aa7b9b22be7db45cdb20cbd2c0b0773</cites><orcidid>0000-0003-3565-551X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021979720308031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Yang, Kai-Chieh</creatorcontrib><creatorcontrib>Wang, Chieh</creatorcontrib><creatorcontrib>Hu, Ting-Yu</creatorcontrib><creatorcontrib>Lin, Hui-Ping</creatorcontrib><creatorcontrib>Cho, Kuan-Hung</creatorcontrib><creatorcontrib>Chen, Li-Jen</creatorcontrib><title>Self-pinning of silica suspension droplets on hydrophobic surfaces</title><title>Journal of colloid and interface science</title><description>[Display omitted] Self-pinning induced by the aggregation of particles at the edge of a pinned drop is a pre-requisite for the coffee ring formation. The edge (three-phase contact line) of a suspension drop on a hydrophobic surface would depin and shrink in the early stage of evaporation process. It is plausible to conjecture that the self-pinning of silica suspension drops depends on the particle size and surface property. Two substrate materials, the alkylsilane coated surfaces and the polydimethylsiloxane surfaces, and three different sizes of silica particles are used to explore the criterion of self-pinning of silica suspension drops on these hydrophobic surfaces. The evaporation process of droplets is recorded and further analyzed. The pinning concentration of silica suspensions of a fixed size linearly depends on the receding contact angle of the surface, irrelevant to the substrate material and initial particle concentration. The pinning concentration decreases along with an increase in particle size. In addition, the pinning concentrations of bi-dispersed silica (e.g. 400 + 1000 nm) suspensions have an excellent agreement with that of larger size (1000 nm) particle system. That implies that the larger particle dominates the system of bi-dispersed silica suspensions to initiate the self-pinning, further verified by SEM images.</description><subject>Coffee ring effect</subject><subject>Hydrophobicity</subject><subject>Receding contact angle</subject><subject>Self-pinning</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU89emmdpGmzAS-6-AULHtRzSNKpm9Jta6Yr7L-3ZT17mnfgeQfmYeyaQ8aBl7dN1vhAmQABGZQZFPqELTjoIlUc8lO2ABA81Uqrc3ZB1ABwXhR6wR7esa3TIXRd6L6Svk4otMHbhPY0YEeh75Iq9kOLIyVT3h7mbdu74Cck1tYjXbKz2raEV39zyT6fHj_WL-nm7fl1fb9JfZ7nYypVDlJylDrXytaiRgGWS1UohRJkVShrldNOCIeqcrLwlRPgXSU8OFAqX7Kb490h9t97pNHsAnlsW9thvycjJF9xsRLlakLFEfWxJ4pYmyGGnY0Hw8HMwkxjZmFmFmagNJOwqXR3LOH0xE_AaMgH7DxWIaIfTdWH_-q_UVt0fg</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Yang, Kai-Chieh</creator><creator>Wang, Chieh</creator><creator>Hu, Ting-Yu</creator><creator>Lin, Hui-Ping</creator><creator>Cho, Kuan-Hung</creator><creator>Chen, Li-Jen</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3565-551X</orcidid></search><sort><creationdate>20201101</creationdate><title>Self-pinning of silica suspension droplets on hydrophobic surfaces</title><author>Yang, Kai-Chieh ; Wang, Chieh ; Hu, Ting-Yu ; Lin, Hui-Ping ; Cho, Kuan-Hung ; Chen, Li-Jen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-4730441e49397af2fe20a147577e404d57aa7b9b22be7db45cdb20cbd2c0b0773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Coffee ring effect</topic><topic>Hydrophobicity</topic><topic>Receding contact angle</topic><topic>Self-pinning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Kai-Chieh</creatorcontrib><creatorcontrib>Wang, Chieh</creatorcontrib><creatorcontrib>Hu, Ting-Yu</creatorcontrib><creatorcontrib>Lin, Hui-Ping</creatorcontrib><creatorcontrib>Cho, Kuan-Hung</creatorcontrib><creatorcontrib>Chen, Li-Jen</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Kai-Chieh</au><au>Wang, Chieh</au><au>Hu, Ting-Yu</au><au>Lin, Hui-Ping</au><au>Cho, Kuan-Hung</au><au>Chen, Li-Jen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-pinning of silica suspension droplets on hydrophobic surfaces</atitle><jtitle>Journal of colloid and interface science</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>579</volume><spage>212</spage><epage>220</epage><pages>212-220</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted] Self-pinning induced by the aggregation of particles at the edge of a pinned drop is a pre-requisite for the coffee ring formation. The edge (three-phase contact line) of a suspension drop on a hydrophobic surface would depin and shrink in the early stage of evaporation process. It is plausible to conjecture that the self-pinning of silica suspension drops depends on the particle size and surface property. Two substrate materials, the alkylsilane coated surfaces and the polydimethylsiloxane surfaces, and three different sizes of silica particles are used to explore the criterion of self-pinning of silica suspension drops on these hydrophobic surfaces. The evaporation process of droplets is recorded and further analyzed. The pinning concentration of silica suspensions of a fixed size linearly depends on the receding contact angle of the surface, irrelevant to the substrate material and initial particle concentration. The pinning concentration decreases along with an increase in particle size. In addition, the pinning concentrations of bi-dispersed silica (e.g. 400 + 1000 nm) suspensions have an excellent agreement with that of larger size (1000 nm) particle system. That implies that the larger particle dominates the system of bi-dispersed silica suspensions to initiate the self-pinning, further verified by SEM images.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcis.2020.06.059</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3565-551X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2020-11, Vol.579, p.212-220
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_2418128268
source Elsevier ScienceDirect Journals
subjects Coffee ring effect
Hydrophobicity
Receding contact angle
Self-pinning
title Self-pinning of silica suspension droplets on hydrophobic surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A26%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-pinning%20of%20silica%20suspension%20droplets%20on%20hydrophobic%20surfaces&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Yang,%20Kai-Chieh&rft.date=2020-11-01&rft.volume=579&rft.spage=212&rft.epage=220&rft.pages=212-220&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2020.06.059&rft_dat=%3Cproquest_cross%3E2418128268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2418128268&rft_id=info:pmid/&rft_els_id=S0021979720308031&rfr_iscdi=true