Self-pinning of silica suspension droplets on hydrophobic surfaces
[Display omitted] Self-pinning induced by the aggregation of particles at the edge of a pinned drop is a pre-requisite for the coffee ring formation. The edge (three-phase contact line) of a suspension drop on a hydrophobic surface would depin and shrink in the early stage of evaporation process. It...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2020-11, Vol.579, p.212-220 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 220 |
---|---|
container_issue | |
container_start_page | 212 |
container_title | Journal of colloid and interface science |
container_volume | 579 |
creator | Yang, Kai-Chieh Wang, Chieh Hu, Ting-Yu Lin, Hui-Ping Cho, Kuan-Hung Chen, Li-Jen |
description | [Display omitted]
Self-pinning induced by the aggregation of particles at the edge of a pinned drop is a pre-requisite for the coffee ring formation. The edge (three-phase contact line) of a suspension drop on a hydrophobic surface would depin and shrink in the early stage of evaporation process. It is plausible to conjecture that the self-pinning of silica suspension drops depends on the particle size and surface property.
Two substrate materials, the alkylsilane coated surfaces and the polydimethylsiloxane surfaces, and three different sizes of silica particles are used to explore the criterion of self-pinning of silica suspension drops on these hydrophobic surfaces. The evaporation process of droplets is recorded and further analyzed.
The pinning concentration of silica suspensions of a fixed size linearly depends on the receding contact angle of the surface, irrelevant to the substrate material and initial particle concentration. The pinning concentration decreases along with an increase in particle size. In addition, the pinning concentrations of bi-dispersed silica (e.g. 400 + 1000 nm) suspensions have an excellent agreement with that of larger size (1000 nm) particle system. That implies that the larger particle dominates the system of bi-dispersed silica suspensions to initiate the self-pinning, further verified by SEM images. |
doi_str_mv | 10.1016/j.jcis.2020.06.059 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2418128268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979720308031</els_id><sourcerecordid>2418128268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-4730441e49397af2fe20a147577e404d57aa7b9b22be7db45cdb20cbd2c0b0773</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU89emmdpGmzAS-6-AULHtRzSNKpm9Jta6Yr7L-3ZT17mnfgeQfmYeyaQ8aBl7dN1vhAmQABGZQZFPqELTjoIlUc8lO2ABA81Uqrc3ZB1ABwXhR6wR7esa3TIXRd6L6Svk4otMHbhPY0YEeh75Iq9kOLIyVT3h7mbdu74Cck1tYjXbKz2raEV39zyT6fHj_WL-nm7fl1fb9JfZ7nYypVDlJylDrXytaiRgGWS1UohRJkVShrldNOCIeqcrLwlRPgXSU8OFAqX7Kb490h9t97pNHsAnlsW9thvycjJF9xsRLlakLFEfWxJ4pYmyGGnY0Hw8HMwkxjZmFmFmagNJOwqXR3LOH0xE_AaMgH7DxWIaIfTdWH_-q_UVt0fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418128268</pqid></control><display><type>article</type><title>Self-pinning of silica suspension droplets on hydrophobic surfaces</title><source>Elsevier ScienceDirect Journals</source><creator>Yang, Kai-Chieh ; Wang, Chieh ; Hu, Ting-Yu ; Lin, Hui-Ping ; Cho, Kuan-Hung ; Chen, Li-Jen</creator><creatorcontrib>Yang, Kai-Chieh ; Wang, Chieh ; Hu, Ting-Yu ; Lin, Hui-Ping ; Cho, Kuan-Hung ; Chen, Li-Jen</creatorcontrib><description>[Display omitted]
Self-pinning induced by the aggregation of particles at the edge of a pinned drop is a pre-requisite for the coffee ring formation. The edge (three-phase contact line) of a suspension drop on a hydrophobic surface would depin and shrink in the early stage of evaporation process. It is plausible to conjecture that the self-pinning of silica suspension drops depends on the particle size and surface property.
Two substrate materials, the alkylsilane coated surfaces and the polydimethylsiloxane surfaces, and three different sizes of silica particles are used to explore the criterion of self-pinning of silica suspension drops on these hydrophobic surfaces. The evaporation process of droplets is recorded and further analyzed.
The pinning concentration of silica suspensions of a fixed size linearly depends on the receding contact angle of the surface, irrelevant to the substrate material and initial particle concentration. The pinning concentration decreases along with an increase in particle size. In addition, the pinning concentrations of bi-dispersed silica (e.g. 400 + 1000 nm) suspensions have an excellent agreement with that of larger size (1000 nm) particle system. That implies that the larger particle dominates the system of bi-dispersed silica suspensions to initiate the self-pinning, further verified by SEM images.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2020.06.059</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Coffee ring effect ; Hydrophobicity ; Receding contact angle ; Self-pinning</subject><ispartof>Journal of colloid and interface science, 2020-11, Vol.579, p.212-220</ispartof><rights>2020 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-4730441e49397af2fe20a147577e404d57aa7b9b22be7db45cdb20cbd2c0b0773</citedby><cites>FETCH-LOGICAL-c333t-4730441e49397af2fe20a147577e404d57aa7b9b22be7db45cdb20cbd2c0b0773</cites><orcidid>0000-0003-3565-551X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021979720308031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Yang, Kai-Chieh</creatorcontrib><creatorcontrib>Wang, Chieh</creatorcontrib><creatorcontrib>Hu, Ting-Yu</creatorcontrib><creatorcontrib>Lin, Hui-Ping</creatorcontrib><creatorcontrib>Cho, Kuan-Hung</creatorcontrib><creatorcontrib>Chen, Li-Jen</creatorcontrib><title>Self-pinning of silica suspension droplets on hydrophobic surfaces</title><title>Journal of colloid and interface science</title><description>[Display omitted]
Self-pinning induced by the aggregation of particles at the edge of a pinned drop is a pre-requisite for the coffee ring formation. The edge (three-phase contact line) of a suspension drop on a hydrophobic surface would depin and shrink in the early stage of evaporation process. It is plausible to conjecture that the self-pinning of silica suspension drops depends on the particle size and surface property.
Two substrate materials, the alkylsilane coated surfaces and the polydimethylsiloxane surfaces, and three different sizes of silica particles are used to explore the criterion of self-pinning of silica suspension drops on these hydrophobic surfaces. The evaporation process of droplets is recorded and further analyzed.
The pinning concentration of silica suspensions of a fixed size linearly depends on the receding contact angle of the surface, irrelevant to the substrate material and initial particle concentration. The pinning concentration decreases along with an increase in particle size. In addition, the pinning concentrations of bi-dispersed silica (e.g. 400 + 1000 nm) suspensions have an excellent agreement with that of larger size (1000 nm) particle system. That implies that the larger particle dominates the system of bi-dispersed silica suspensions to initiate the self-pinning, further verified by SEM images.</description><subject>Coffee ring effect</subject><subject>Hydrophobicity</subject><subject>Receding contact angle</subject><subject>Self-pinning</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU89emmdpGmzAS-6-AULHtRzSNKpm9Jta6Yr7L-3ZT17mnfgeQfmYeyaQ8aBl7dN1vhAmQABGZQZFPqELTjoIlUc8lO2ABA81Uqrc3ZB1ABwXhR6wR7esa3TIXRd6L6Svk4otMHbhPY0YEeh75Iq9kOLIyVT3h7mbdu74Cck1tYjXbKz2raEV39zyT6fHj_WL-nm7fl1fb9JfZ7nYypVDlJylDrXytaiRgGWS1UohRJkVShrldNOCIeqcrLwlRPgXSU8OFAqX7Kb490h9t97pNHsAnlsW9thvycjJF9xsRLlakLFEfWxJ4pYmyGGnY0Hw8HMwkxjZmFmFmagNJOwqXR3LOH0xE_AaMgH7DxWIaIfTdWH_-q_UVt0fg</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Yang, Kai-Chieh</creator><creator>Wang, Chieh</creator><creator>Hu, Ting-Yu</creator><creator>Lin, Hui-Ping</creator><creator>Cho, Kuan-Hung</creator><creator>Chen, Li-Jen</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3565-551X</orcidid></search><sort><creationdate>20201101</creationdate><title>Self-pinning of silica suspension droplets on hydrophobic surfaces</title><author>Yang, Kai-Chieh ; Wang, Chieh ; Hu, Ting-Yu ; Lin, Hui-Ping ; Cho, Kuan-Hung ; Chen, Li-Jen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-4730441e49397af2fe20a147577e404d57aa7b9b22be7db45cdb20cbd2c0b0773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Coffee ring effect</topic><topic>Hydrophobicity</topic><topic>Receding contact angle</topic><topic>Self-pinning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Kai-Chieh</creatorcontrib><creatorcontrib>Wang, Chieh</creatorcontrib><creatorcontrib>Hu, Ting-Yu</creatorcontrib><creatorcontrib>Lin, Hui-Ping</creatorcontrib><creatorcontrib>Cho, Kuan-Hung</creatorcontrib><creatorcontrib>Chen, Li-Jen</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Kai-Chieh</au><au>Wang, Chieh</au><au>Hu, Ting-Yu</au><au>Lin, Hui-Ping</au><au>Cho, Kuan-Hung</au><au>Chen, Li-Jen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-pinning of silica suspension droplets on hydrophobic surfaces</atitle><jtitle>Journal of colloid and interface science</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>579</volume><spage>212</spage><epage>220</epage><pages>212-220</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted]
Self-pinning induced by the aggregation of particles at the edge of a pinned drop is a pre-requisite for the coffee ring formation. The edge (three-phase contact line) of a suspension drop on a hydrophobic surface would depin and shrink in the early stage of evaporation process. It is plausible to conjecture that the self-pinning of silica suspension drops depends on the particle size and surface property.
Two substrate materials, the alkylsilane coated surfaces and the polydimethylsiloxane surfaces, and three different sizes of silica particles are used to explore the criterion of self-pinning of silica suspension drops on these hydrophobic surfaces. The evaporation process of droplets is recorded and further analyzed.
The pinning concentration of silica suspensions of a fixed size linearly depends on the receding contact angle of the surface, irrelevant to the substrate material and initial particle concentration. The pinning concentration decreases along with an increase in particle size. In addition, the pinning concentrations of bi-dispersed silica (e.g. 400 + 1000 nm) suspensions have an excellent agreement with that of larger size (1000 nm) particle system. That implies that the larger particle dominates the system of bi-dispersed silica suspensions to initiate the self-pinning, further verified by SEM images.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcis.2020.06.059</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3565-551X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9797 |
ispartof | Journal of colloid and interface science, 2020-11, Vol.579, p.212-220 |
issn | 0021-9797 1095-7103 |
language | eng |
recordid | cdi_proquest_miscellaneous_2418128268 |
source | Elsevier ScienceDirect Journals |
subjects | Coffee ring effect Hydrophobicity Receding contact angle Self-pinning |
title | Self-pinning of silica suspension droplets on hydrophobic surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A26%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-pinning%20of%20silica%20suspension%20droplets%20on%20hydrophobic%20surfaces&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Yang,%20Kai-Chieh&rft.date=2020-11-01&rft.volume=579&rft.spage=212&rft.epage=220&rft.pages=212-220&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2020.06.059&rft_dat=%3Cproquest_cross%3E2418128268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2418128268&rft_id=info:pmid/&rft_els_id=S0021979720308031&rfr_iscdi=true |