Relaxation Dynamics of the Triazene Compound Berenil in DNA-Minor-Groove Confinement after Photoexcitation

The effects of biomolecular embedding on the photoinduced relaxation process of the DNA-minor-groove binder berenil, diminazene aceturate, are studied with quantum mechanics/molecular mechanics, QM/MM, calculations that employ the algebraic diagrammatic construction through second-order, ADC(2), for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2020-08, Vol.16 (8), p.5203-5211
Hauptverfasser: Marefat Khah, Alireza, Reinholdt, Peter, Nuernberger, Patrick, Kongsted, Jacob, Hättig, Christof
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5211
container_issue 8
container_start_page 5203
container_title Journal of chemical theory and computation
container_volume 16
creator Marefat Khah, Alireza
Reinholdt, Peter
Nuernberger, Patrick
Kongsted, Jacob
Hättig, Christof
description The effects of biomolecular embedding on the photoinduced relaxation process of the DNA-minor-groove binder berenil, diminazene aceturate, are studied with quantum mechanics/molecular mechanics, QM/MM, calculations that employ the algebraic diagrammatic construction through second-order, ADC(2), for the quantum mechanical part and an atomistic polarizable embedding for the classical part. The lowest singlet excitation to the S1 state is a bright transition with a ππ* character and a perichromatic red shift, due to the interactions with the solvent and DNA. The excited-state relaxation pathway is a two-step mechanism, an NN azo-bond stretch followed by a volume-conserving bicycle-pedal twist. The DNA confinement and the coupling to solvent molecules via hydrogen bonds lead, for the excited-state relaxation process, only to small deviations from the ideal bicycle-pedal relaxation. Because of its volume-conserving character, the S1 excited-state relaxation proceeds almost unhindered, even in a fully rigid minor-groove confinement. With a fully frozen DNA minor groove and solvent, the energy gap for deexcitation from S1 to the ground state increased to 2.0 eV compared to 0.16 eV in aqueous solution. When the relaxation of the first solvation shell is included, the relaxation process on the S1 potential energy surface proceeds to a region on the potential energy surface, where only a small gap to the ground-state potential energy surface remains, 0.43 eV. These results show that the solvent relaxation has a significant effect in controlling the energy gap between the ground and S1 electronically excited states, which explains the experimental observations of the fluorescence characteristics of berenil in DNA confinement.
doi_str_mv 10.1021/acs.jctc.0c00489
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2418120745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418120745</sourcerecordid><originalsourceid>FETCH-LOGICAL-a406t-316a6b7436a3857d5410bae1fc1858c28d3de666593c3fc3e4407d52b63802943</originalsourceid><addsrcrecordid>eNp10Ttv2zAUBWAiaBDn0b1TQaBLh8jhSzQ1Js4TyKMo0lmgqSuYhkS6JFXY-fWhYydDgUzk8N3DCx6EvlEypoTRM23ieGGSGRNDiFDVHjqkpaiKSjL55eNO1QgdxbgghHPB-AEacVYqUU7IIVr8hk6vdLLe4cu10701EfsWpzng52D1CzjAU98v_eAafAEBnO2wzfjxvHiwzofiJnj_b4Ncax304BLWbYKAf8198rAyNr3ln6D9VncRvu7OY_Tn-up5elvcP93cTc_vCy2ITAWnUsvZRHCpuSonTSkomWmgraGqVIaphjcgpSwrbnhrOAhBsmIzyRVhleDH6Oc2dxn83wFiqnsbDXSdduCHWDNBFWVkIspMf_xHF34ILm-XFZeC52VIVmSrTPAxBmjrZbC9DuuaknrTQ517qDc91Lse8sj3XfAw66H5GHj_-AxOt-Bt9P3RT_NeAThukxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436433160</pqid></control><display><type>article</type><title>Relaxation Dynamics of the Triazene Compound Berenil in DNA-Minor-Groove Confinement after Photoexcitation</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Marefat Khah, Alireza ; Reinholdt, Peter ; Nuernberger, Patrick ; Kongsted, Jacob ; Hättig, Christof</creator><creatorcontrib>Marefat Khah, Alireza ; Reinholdt, Peter ; Nuernberger, Patrick ; Kongsted, Jacob ; Hättig, Christof</creatorcontrib><description>The effects of biomolecular embedding on the photoinduced relaxation process of the DNA-minor-groove binder berenil, diminazene aceturate, are studied with quantum mechanics/molecular mechanics, QM/MM, calculations that employ the algebraic diagrammatic construction through second-order, ADC(2), for the quantum mechanical part and an atomistic polarizable embedding for the classical part. The lowest singlet excitation to the S1 state is a bright transition with a ππ* character and a perichromatic red shift, due to the interactions with the solvent and DNA. The excited-state relaxation pathway is a two-step mechanism, an NN azo-bond stretch followed by a volume-conserving bicycle-pedal twist. The DNA confinement and the coupling to solvent molecules via hydrogen bonds lead, for the excited-state relaxation process, only to small deviations from the ideal bicycle-pedal relaxation. Because of its volume-conserving character, the S1 excited-state relaxation proceeds almost unhindered, even in a fully rigid minor-groove confinement. With a fully frozen DNA minor groove and solvent, the energy gap for deexcitation from S1 to the ground state increased to 2.0 eV compared to 0.16 eV in aqueous solution. When the relaxation of the first solvation shell is included, the relaxation process on the S1 potential energy surface proceeds to a region on the potential energy surface, where only a small gap to the ground-state potential energy surface remains, 0.43 eV. These results show that the solvent relaxation has a significant effect in controlling the energy gap between the ground and S1 electronically excited states, which explains the experimental observations of the fluorescence characteristics of berenil in DNA confinement.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.0c00489</identifier><identifier>PMID: 32584570</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aqueous solutions ; Bicycles ; Chemical bonds ; Confinement ; Coupling (molecular) ; Deoxyribonucleic acid ; Diminazene - analogs &amp; derivatives ; Diminazene - chemistry ; DNA ; DNA - chemistry ; Doppler effect ; Embedding ; Energy gap ; Excitation ; Fluorescence ; Grooves ; Hydrogen bonds ; Molecular Dynamics Simulation ; Photochemical Processes ; Photoexcitation ; Potential energy ; Quantum mechanics ; Quantum Theory ; Red shift ; Solvation ; Solvents ; Spectroscopy and Excited States</subject><ispartof>Journal of chemical theory and computation, 2020-08, Vol.16 (8), p.5203-5211</ispartof><rights>Copyright American Chemical Society Aug 11, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a406t-316a6b7436a3857d5410bae1fc1858c28d3de666593c3fc3e4407d52b63802943</citedby><cites>FETCH-LOGICAL-a406t-316a6b7436a3857d5410bae1fc1858c28d3de666593c3fc3e4407d52b63802943</cites><orcidid>0000-0003-2406-700X ; 0000-0002-5752-2710 ; 0000-0002-7725-2164 ; 0000-0002-9593-0344</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.0c00489$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.0c00489$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32584570$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marefat Khah, Alireza</creatorcontrib><creatorcontrib>Reinholdt, Peter</creatorcontrib><creatorcontrib>Nuernberger, Patrick</creatorcontrib><creatorcontrib>Kongsted, Jacob</creatorcontrib><creatorcontrib>Hättig, Christof</creatorcontrib><title>Relaxation Dynamics of the Triazene Compound Berenil in DNA-Minor-Groove Confinement after Photoexcitation</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>The effects of biomolecular embedding on the photoinduced relaxation process of the DNA-minor-groove binder berenil, diminazene aceturate, are studied with quantum mechanics/molecular mechanics, QM/MM, calculations that employ the algebraic diagrammatic construction through second-order, ADC(2), for the quantum mechanical part and an atomistic polarizable embedding for the classical part. The lowest singlet excitation to the S1 state is a bright transition with a ππ* character and a perichromatic red shift, due to the interactions with the solvent and DNA. The excited-state relaxation pathway is a two-step mechanism, an NN azo-bond stretch followed by a volume-conserving bicycle-pedal twist. The DNA confinement and the coupling to solvent molecules via hydrogen bonds lead, for the excited-state relaxation process, only to small deviations from the ideal bicycle-pedal relaxation. Because of its volume-conserving character, the S1 excited-state relaxation proceeds almost unhindered, even in a fully rigid minor-groove confinement. With a fully frozen DNA minor groove and solvent, the energy gap for deexcitation from S1 to the ground state increased to 2.0 eV compared to 0.16 eV in aqueous solution. When the relaxation of the first solvation shell is included, the relaxation process on the S1 potential energy surface proceeds to a region on the potential energy surface, where only a small gap to the ground-state potential energy surface remains, 0.43 eV. These results show that the solvent relaxation has a significant effect in controlling the energy gap between the ground and S1 electronically excited states, which explains the experimental observations of the fluorescence characteristics of berenil in DNA confinement.</description><subject>Aqueous solutions</subject><subject>Bicycles</subject><subject>Chemical bonds</subject><subject>Confinement</subject><subject>Coupling (molecular)</subject><subject>Deoxyribonucleic acid</subject><subject>Diminazene - analogs &amp; derivatives</subject><subject>Diminazene - chemistry</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>Doppler effect</subject><subject>Embedding</subject><subject>Energy gap</subject><subject>Excitation</subject><subject>Fluorescence</subject><subject>Grooves</subject><subject>Hydrogen bonds</subject><subject>Molecular Dynamics Simulation</subject><subject>Photochemical Processes</subject><subject>Photoexcitation</subject><subject>Potential energy</subject><subject>Quantum mechanics</subject><subject>Quantum Theory</subject><subject>Red shift</subject><subject>Solvation</subject><subject>Solvents</subject><subject>Spectroscopy and Excited States</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10Ttv2zAUBWAiaBDn0b1TQaBLh8jhSzQ1Js4TyKMo0lmgqSuYhkS6JFXY-fWhYydDgUzk8N3DCx6EvlEypoTRM23ieGGSGRNDiFDVHjqkpaiKSjL55eNO1QgdxbgghHPB-AEacVYqUU7IIVr8hk6vdLLe4cu10701EfsWpzng52D1CzjAU98v_eAafAEBnO2wzfjxvHiwzofiJnj_b4Ncax304BLWbYKAf8198rAyNr3ln6D9VncRvu7OY_Tn-up5elvcP93cTc_vCy2ITAWnUsvZRHCpuSonTSkomWmgraGqVIaphjcgpSwrbnhrOAhBsmIzyRVhleDH6Oc2dxn83wFiqnsbDXSdduCHWDNBFWVkIspMf_xHF34ILm-XFZeC52VIVmSrTPAxBmjrZbC9DuuaknrTQ517qDc91Lse8sj3XfAw66H5GHj_-AxOt-Bt9P3RT_NeAThukxA</recordid><startdate>20200811</startdate><enddate>20200811</enddate><creator>Marefat Khah, Alireza</creator><creator>Reinholdt, Peter</creator><creator>Nuernberger, Patrick</creator><creator>Kongsted, Jacob</creator><creator>Hättig, Christof</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2406-700X</orcidid><orcidid>https://orcid.org/0000-0002-5752-2710</orcidid><orcidid>https://orcid.org/0000-0002-7725-2164</orcidid><orcidid>https://orcid.org/0000-0002-9593-0344</orcidid></search><sort><creationdate>20200811</creationdate><title>Relaxation Dynamics of the Triazene Compound Berenil in DNA-Minor-Groove Confinement after Photoexcitation</title><author>Marefat Khah, Alireza ; Reinholdt, Peter ; Nuernberger, Patrick ; Kongsted, Jacob ; Hättig, Christof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a406t-316a6b7436a3857d5410bae1fc1858c28d3de666593c3fc3e4407d52b63802943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aqueous solutions</topic><topic>Bicycles</topic><topic>Chemical bonds</topic><topic>Confinement</topic><topic>Coupling (molecular)</topic><topic>Deoxyribonucleic acid</topic><topic>Diminazene - analogs &amp; derivatives</topic><topic>Diminazene - chemistry</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>Doppler effect</topic><topic>Embedding</topic><topic>Energy gap</topic><topic>Excitation</topic><topic>Fluorescence</topic><topic>Grooves</topic><topic>Hydrogen bonds</topic><topic>Molecular Dynamics Simulation</topic><topic>Photochemical Processes</topic><topic>Photoexcitation</topic><topic>Potential energy</topic><topic>Quantum mechanics</topic><topic>Quantum Theory</topic><topic>Red shift</topic><topic>Solvation</topic><topic>Solvents</topic><topic>Spectroscopy and Excited States</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marefat Khah, Alireza</creatorcontrib><creatorcontrib>Reinholdt, Peter</creatorcontrib><creatorcontrib>Nuernberger, Patrick</creatorcontrib><creatorcontrib>Kongsted, Jacob</creatorcontrib><creatorcontrib>Hättig, Christof</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marefat Khah, Alireza</au><au>Reinholdt, Peter</au><au>Nuernberger, Patrick</au><au>Kongsted, Jacob</au><au>Hättig, Christof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relaxation Dynamics of the Triazene Compound Berenil in DNA-Minor-Groove Confinement after Photoexcitation</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2020-08-11</date><risdate>2020</risdate><volume>16</volume><issue>8</issue><spage>5203</spage><epage>5211</epage><pages>5203-5211</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>The effects of biomolecular embedding on the photoinduced relaxation process of the DNA-minor-groove binder berenil, diminazene aceturate, are studied with quantum mechanics/molecular mechanics, QM/MM, calculations that employ the algebraic diagrammatic construction through second-order, ADC(2), for the quantum mechanical part and an atomistic polarizable embedding for the classical part. The lowest singlet excitation to the S1 state is a bright transition with a ππ* character and a perichromatic red shift, due to the interactions with the solvent and DNA. The excited-state relaxation pathway is a two-step mechanism, an NN azo-bond stretch followed by a volume-conserving bicycle-pedal twist. The DNA confinement and the coupling to solvent molecules via hydrogen bonds lead, for the excited-state relaxation process, only to small deviations from the ideal bicycle-pedal relaxation. Because of its volume-conserving character, the S1 excited-state relaxation proceeds almost unhindered, even in a fully rigid minor-groove confinement. With a fully frozen DNA minor groove and solvent, the energy gap for deexcitation from S1 to the ground state increased to 2.0 eV compared to 0.16 eV in aqueous solution. When the relaxation of the first solvation shell is included, the relaxation process on the S1 potential energy surface proceeds to a region on the potential energy surface, where only a small gap to the ground-state potential energy surface remains, 0.43 eV. These results show that the solvent relaxation has a significant effect in controlling the energy gap between the ground and S1 electronically excited states, which explains the experimental observations of the fluorescence characteristics of berenil in DNA confinement.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32584570</pmid><doi>10.1021/acs.jctc.0c00489</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2406-700X</orcidid><orcidid>https://orcid.org/0000-0002-5752-2710</orcidid><orcidid>https://orcid.org/0000-0002-7725-2164</orcidid><orcidid>https://orcid.org/0000-0002-9593-0344</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2020-08, Vol.16 (8), p.5203-5211
issn 1549-9618
1549-9626
language eng
recordid cdi_proquest_miscellaneous_2418120745
source MEDLINE; American Chemical Society Journals
subjects Aqueous solutions
Bicycles
Chemical bonds
Confinement
Coupling (molecular)
Deoxyribonucleic acid
Diminazene - analogs & derivatives
Diminazene - chemistry
DNA
DNA - chemistry
Doppler effect
Embedding
Energy gap
Excitation
Fluorescence
Grooves
Hydrogen bonds
Molecular Dynamics Simulation
Photochemical Processes
Photoexcitation
Potential energy
Quantum mechanics
Quantum Theory
Red shift
Solvation
Solvents
Spectroscopy and Excited States
title Relaxation Dynamics of the Triazene Compound Berenil in DNA-Minor-Groove Confinement after Photoexcitation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A47%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relaxation%20Dynamics%20of%20the%20Triazene%20Compound%20Berenil%20in%20DNA-Minor-Groove%20Confinement%20after%20Photoexcitation&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Marefat%20Khah,%20Alireza&rft.date=2020-08-11&rft.volume=16&rft.issue=8&rft.spage=5203&rft.epage=5211&rft.pages=5203-5211&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.0c00489&rft_dat=%3Cproquest_cross%3E2418120745%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436433160&rft_id=info:pmid/32584570&rfr_iscdi=true