Relaxation Dynamics of the Triazene Compound Berenil in DNA-Minor-Groove Confinement after Photoexcitation
The effects of biomolecular embedding on the photoinduced relaxation process of the DNA-minor-groove binder berenil, diminazene aceturate, are studied with quantum mechanics/molecular mechanics, QM/MM, calculations that employ the algebraic diagrammatic construction through second-order, ADC(2), for...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2020-08, Vol.16 (8), p.5203-5211 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5211 |
---|---|
container_issue | 8 |
container_start_page | 5203 |
container_title | Journal of chemical theory and computation |
container_volume | 16 |
creator | Marefat Khah, Alireza Reinholdt, Peter Nuernberger, Patrick Kongsted, Jacob Hättig, Christof |
description | The effects of biomolecular embedding on the photoinduced relaxation process of the DNA-minor-groove binder berenil, diminazene aceturate, are studied with quantum mechanics/molecular mechanics, QM/MM, calculations that employ the algebraic diagrammatic construction through second-order, ADC(2), for the quantum mechanical part and an atomistic polarizable embedding for the classical part. The lowest singlet excitation to the S1 state is a bright transition with a ππ* character and a perichromatic red shift, due to the interactions with the solvent and DNA. The excited-state relaxation pathway is a two-step mechanism, an NN azo-bond stretch followed by a volume-conserving bicycle-pedal twist. The DNA confinement and the coupling to solvent molecules via hydrogen bonds lead, for the excited-state relaxation process, only to small deviations from the ideal bicycle-pedal relaxation. Because of its volume-conserving character, the S1 excited-state relaxation proceeds almost unhindered, even in a fully rigid minor-groove confinement. With a fully frozen DNA minor groove and solvent, the energy gap for deexcitation from S1 to the ground state increased to 2.0 eV compared to 0.16 eV in aqueous solution. When the relaxation of the first solvation shell is included, the relaxation process on the S1 potential energy surface proceeds to a region on the potential energy surface, where only a small gap to the ground-state potential energy surface remains, 0.43 eV. These results show that the solvent relaxation has a significant effect in controlling the energy gap between the ground and S1 electronically excited states, which explains the experimental observations of the fluorescence characteristics of berenil in DNA confinement. |
doi_str_mv | 10.1021/acs.jctc.0c00489 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2418120745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418120745</sourcerecordid><originalsourceid>FETCH-LOGICAL-a406t-316a6b7436a3857d5410bae1fc1858c28d3de666593c3fc3e4407d52b63802943</originalsourceid><addsrcrecordid>eNp10Ttv2zAUBWAiaBDn0b1TQaBLh8jhSzQ1Js4TyKMo0lmgqSuYhkS6JFXY-fWhYydDgUzk8N3DCx6EvlEypoTRM23ieGGSGRNDiFDVHjqkpaiKSjL55eNO1QgdxbgghHPB-AEacVYqUU7IIVr8hk6vdLLe4cu10701EfsWpzng52D1CzjAU98v_eAafAEBnO2wzfjxvHiwzofiJnj_b4Ncax304BLWbYKAf8198rAyNr3ln6D9VncRvu7OY_Tn-up5elvcP93cTc_vCy2ITAWnUsvZRHCpuSonTSkomWmgraGqVIaphjcgpSwrbnhrOAhBsmIzyRVhleDH6Oc2dxn83wFiqnsbDXSdduCHWDNBFWVkIspMf_xHF34ILm-XFZeC52VIVmSrTPAxBmjrZbC9DuuaknrTQ517qDc91Lse8sj3XfAw66H5GHj_-AxOt-Bt9P3RT_NeAThukxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436433160</pqid></control><display><type>article</type><title>Relaxation Dynamics of the Triazene Compound Berenil in DNA-Minor-Groove Confinement after Photoexcitation</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Marefat Khah, Alireza ; Reinholdt, Peter ; Nuernberger, Patrick ; Kongsted, Jacob ; Hättig, Christof</creator><creatorcontrib>Marefat Khah, Alireza ; Reinholdt, Peter ; Nuernberger, Patrick ; Kongsted, Jacob ; Hättig, Christof</creatorcontrib><description>The effects of biomolecular embedding on the photoinduced relaxation process of the DNA-minor-groove binder berenil, diminazene aceturate, are studied with quantum mechanics/molecular mechanics, QM/MM, calculations that employ the algebraic diagrammatic construction through second-order, ADC(2), for the quantum mechanical part and an atomistic polarizable embedding for the classical part. The lowest singlet excitation to the S1 state is a bright transition with a ππ* character and a perichromatic red shift, due to the interactions with the solvent and DNA. The excited-state relaxation pathway is a two-step mechanism, an NN azo-bond stretch followed by a volume-conserving bicycle-pedal twist. The DNA confinement and the coupling to solvent molecules via hydrogen bonds lead, for the excited-state relaxation process, only to small deviations from the ideal bicycle-pedal relaxation. Because of its volume-conserving character, the S1 excited-state relaxation proceeds almost unhindered, even in a fully rigid minor-groove confinement. With a fully frozen DNA minor groove and solvent, the energy gap for deexcitation from S1 to the ground state increased to 2.0 eV compared to 0.16 eV in aqueous solution. When the relaxation of the first solvation shell is included, the relaxation process on the S1 potential energy surface proceeds to a region on the potential energy surface, where only a small gap to the ground-state potential energy surface remains, 0.43 eV. These results show that the solvent relaxation has a significant effect in controlling the energy gap between the ground and S1 electronically excited states, which explains the experimental observations of the fluorescence characteristics of berenil in DNA confinement.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.0c00489</identifier><identifier>PMID: 32584570</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aqueous solutions ; Bicycles ; Chemical bonds ; Confinement ; Coupling (molecular) ; Deoxyribonucleic acid ; Diminazene - analogs & derivatives ; Diminazene - chemistry ; DNA ; DNA - chemistry ; Doppler effect ; Embedding ; Energy gap ; Excitation ; Fluorescence ; Grooves ; Hydrogen bonds ; Molecular Dynamics Simulation ; Photochemical Processes ; Photoexcitation ; Potential energy ; Quantum mechanics ; Quantum Theory ; Red shift ; Solvation ; Solvents ; Spectroscopy and Excited States</subject><ispartof>Journal of chemical theory and computation, 2020-08, Vol.16 (8), p.5203-5211</ispartof><rights>Copyright American Chemical Society Aug 11, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a406t-316a6b7436a3857d5410bae1fc1858c28d3de666593c3fc3e4407d52b63802943</citedby><cites>FETCH-LOGICAL-a406t-316a6b7436a3857d5410bae1fc1858c28d3de666593c3fc3e4407d52b63802943</cites><orcidid>0000-0003-2406-700X ; 0000-0002-5752-2710 ; 0000-0002-7725-2164 ; 0000-0002-9593-0344</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.0c00489$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.0c00489$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32584570$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marefat Khah, Alireza</creatorcontrib><creatorcontrib>Reinholdt, Peter</creatorcontrib><creatorcontrib>Nuernberger, Patrick</creatorcontrib><creatorcontrib>Kongsted, Jacob</creatorcontrib><creatorcontrib>Hättig, Christof</creatorcontrib><title>Relaxation Dynamics of the Triazene Compound Berenil in DNA-Minor-Groove Confinement after Photoexcitation</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>The effects of biomolecular embedding on the photoinduced relaxation process of the DNA-minor-groove binder berenil, diminazene aceturate, are studied with quantum mechanics/molecular mechanics, QM/MM, calculations that employ the algebraic diagrammatic construction through second-order, ADC(2), for the quantum mechanical part and an atomistic polarizable embedding for the classical part. The lowest singlet excitation to the S1 state is a bright transition with a ππ* character and a perichromatic red shift, due to the interactions with the solvent and DNA. The excited-state relaxation pathway is a two-step mechanism, an NN azo-bond stretch followed by a volume-conserving bicycle-pedal twist. The DNA confinement and the coupling to solvent molecules via hydrogen bonds lead, for the excited-state relaxation process, only to small deviations from the ideal bicycle-pedal relaxation. Because of its volume-conserving character, the S1 excited-state relaxation proceeds almost unhindered, even in a fully rigid minor-groove confinement. With a fully frozen DNA minor groove and solvent, the energy gap for deexcitation from S1 to the ground state increased to 2.0 eV compared to 0.16 eV in aqueous solution. When the relaxation of the first solvation shell is included, the relaxation process on the S1 potential energy surface proceeds to a region on the potential energy surface, where only a small gap to the ground-state potential energy surface remains, 0.43 eV. These results show that the solvent relaxation has a significant effect in controlling the energy gap between the ground and S1 electronically excited states, which explains the experimental observations of the fluorescence characteristics of berenil in DNA confinement.</description><subject>Aqueous solutions</subject><subject>Bicycles</subject><subject>Chemical bonds</subject><subject>Confinement</subject><subject>Coupling (molecular)</subject><subject>Deoxyribonucleic acid</subject><subject>Diminazene - analogs & derivatives</subject><subject>Diminazene - chemistry</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>Doppler effect</subject><subject>Embedding</subject><subject>Energy gap</subject><subject>Excitation</subject><subject>Fluorescence</subject><subject>Grooves</subject><subject>Hydrogen bonds</subject><subject>Molecular Dynamics Simulation</subject><subject>Photochemical Processes</subject><subject>Photoexcitation</subject><subject>Potential energy</subject><subject>Quantum mechanics</subject><subject>Quantum Theory</subject><subject>Red shift</subject><subject>Solvation</subject><subject>Solvents</subject><subject>Spectroscopy and Excited States</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10Ttv2zAUBWAiaBDn0b1TQaBLh8jhSzQ1Js4TyKMo0lmgqSuYhkS6JFXY-fWhYydDgUzk8N3DCx6EvlEypoTRM23ieGGSGRNDiFDVHjqkpaiKSjL55eNO1QgdxbgghHPB-AEacVYqUU7IIVr8hk6vdLLe4cu10701EfsWpzng52D1CzjAU98v_eAafAEBnO2wzfjxvHiwzofiJnj_b4Ncax304BLWbYKAf8198rAyNr3ln6D9VncRvu7OY_Tn-up5elvcP93cTc_vCy2ITAWnUsvZRHCpuSonTSkomWmgraGqVIaphjcgpSwrbnhrOAhBsmIzyRVhleDH6Oc2dxn83wFiqnsbDXSdduCHWDNBFWVkIspMf_xHF34ILm-XFZeC52VIVmSrTPAxBmjrZbC9DuuaknrTQ517qDc91Lse8sj3XfAw66H5GHj_-AxOt-Bt9P3RT_NeAThukxA</recordid><startdate>20200811</startdate><enddate>20200811</enddate><creator>Marefat Khah, Alireza</creator><creator>Reinholdt, Peter</creator><creator>Nuernberger, Patrick</creator><creator>Kongsted, Jacob</creator><creator>Hättig, Christof</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2406-700X</orcidid><orcidid>https://orcid.org/0000-0002-5752-2710</orcidid><orcidid>https://orcid.org/0000-0002-7725-2164</orcidid><orcidid>https://orcid.org/0000-0002-9593-0344</orcidid></search><sort><creationdate>20200811</creationdate><title>Relaxation Dynamics of the Triazene Compound Berenil in DNA-Minor-Groove Confinement after Photoexcitation</title><author>Marefat Khah, Alireza ; Reinholdt, Peter ; Nuernberger, Patrick ; Kongsted, Jacob ; Hättig, Christof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a406t-316a6b7436a3857d5410bae1fc1858c28d3de666593c3fc3e4407d52b63802943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aqueous solutions</topic><topic>Bicycles</topic><topic>Chemical bonds</topic><topic>Confinement</topic><topic>Coupling (molecular)</topic><topic>Deoxyribonucleic acid</topic><topic>Diminazene - analogs & derivatives</topic><topic>Diminazene - chemistry</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>Doppler effect</topic><topic>Embedding</topic><topic>Energy gap</topic><topic>Excitation</topic><topic>Fluorescence</topic><topic>Grooves</topic><topic>Hydrogen bonds</topic><topic>Molecular Dynamics Simulation</topic><topic>Photochemical Processes</topic><topic>Photoexcitation</topic><topic>Potential energy</topic><topic>Quantum mechanics</topic><topic>Quantum Theory</topic><topic>Red shift</topic><topic>Solvation</topic><topic>Solvents</topic><topic>Spectroscopy and Excited States</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marefat Khah, Alireza</creatorcontrib><creatorcontrib>Reinholdt, Peter</creatorcontrib><creatorcontrib>Nuernberger, Patrick</creatorcontrib><creatorcontrib>Kongsted, Jacob</creatorcontrib><creatorcontrib>Hättig, Christof</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marefat Khah, Alireza</au><au>Reinholdt, Peter</au><au>Nuernberger, Patrick</au><au>Kongsted, Jacob</au><au>Hättig, Christof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relaxation Dynamics of the Triazene Compound Berenil in DNA-Minor-Groove Confinement after Photoexcitation</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2020-08-11</date><risdate>2020</risdate><volume>16</volume><issue>8</issue><spage>5203</spage><epage>5211</epage><pages>5203-5211</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>The effects of biomolecular embedding on the photoinduced relaxation process of the DNA-minor-groove binder berenil, diminazene aceturate, are studied with quantum mechanics/molecular mechanics, QM/MM, calculations that employ the algebraic diagrammatic construction through second-order, ADC(2), for the quantum mechanical part and an atomistic polarizable embedding for the classical part. The lowest singlet excitation to the S1 state is a bright transition with a ππ* character and a perichromatic red shift, due to the interactions with the solvent and DNA. The excited-state relaxation pathway is a two-step mechanism, an NN azo-bond stretch followed by a volume-conserving bicycle-pedal twist. The DNA confinement and the coupling to solvent molecules via hydrogen bonds lead, for the excited-state relaxation process, only to small deviations from the ideal bicycle-pedal relaxation. Because of its volume-conserving character, the S1 excited-state relaxation proceeds almost unhindered, even in a fully rigid minor-groove confinement. With a fully frozen DNA minor groove and solvent, the energy gap for deexcitation from S1 to the ground state increased to 2.0 eV compared to 0.16 eV in aqueous solution. When the relaxation of the first solvation shell is included, the relaxation process on the S1 potential energy surface proceeds to a region on the potential energy surface, where only a small gap to the ground-state potential energy surface remains, 0.43 eV. These results show that the solvent relaxation has a significant effect in controlling the energy gap between the ground and S1 electronically excited states, which explains the experimental observations of the fluorescence characteristics of berenil in DNA confinement.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32584570</pmid><doi>10.1021/acs.jctc.0c00489</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2406-700X</orcidid><orcidid>https://orcid.org/0000-0002-5752-2710</orcidid><orcidid>https://orcid.org/0000-0002-7725-2164</orcidid><orcidid>https://orcid.org/0000-0002-9593-0344</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2020-08, Vol.16 (8), p.5203-5211 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_proquest_miscellaneous_2418120745 |
source | MEDLINE; American Chemical Society Journals |
subjects | Aqueous solutions Bicycles Chemical bonds Confinement Coupling (molecular) Deoxyribonucleic acid Diminazene - analogs & derivatives Diminazene - chemistry DNA DNA - chemistry Doppler effect Embedding Energy gap Excitation Fluorescence Grooves Hydrogen bonds Molecular Dynamics Simulation Photochemical Processes Photoexcitation Potential energy Quantum mechanics Quantum Theory Red shift Solvation Solvents Spectroscopy and Excited States |
title | Relaxation Dynamics of the Triazene Compound Berenil in DNA-Minor-Groove Confinement after Photoexcitation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A47%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relaxation%20Dynamics%20of%20the%20Triazene%20Compound%20Berenil%20in%20DNA-Minor-Groove%20Confinement%20after%20Photoexcitation&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Marefat%20Khah,%20Alireza&rft.date=2020-08-11&rft.volume=16&rft.issue=8&rft.spage=5203&rft.epage=5211&rft.pages=5203-5211&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.0c00489&rft_dat=%3Cproquest_cross%3E2418120745%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436433160&rft_id=info:pmid/32584570&rfr_iscdi=true |