Lung delivery of MSCs expressing anti-cancer protein TRAIL visualised with 89Zr-oxine PET-CT
Background MSCTRAIL is a cell-based therapy consisting of human allogeneic umbilical cord-derived MSCs genetically modified to express the anti-cancer protein TRAIL. Though cell-based therapies are typically designed with a target tissue in mind, delivery is rarely assessed due to a lack of translat...
Gespeichert in:
Veröffentlicht in: | Stem cell research & therapy 2020-06, Vol.11 (1), p.1-256, Article 256 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 256 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Stem cell research & therapy |
container_volume | 11 |
creator | Patrick, P. Stephen Kolluri, Krishna K. Zaw Thin, May Edwards, Adam Sage, Elizabeth K. Sanderson, Tom Weil, Benjamin D. Dickson, John C. Lythgoe, Mark F. Lowdell, Mark Janes, Sam M. Kalber, Tammy L. |
description | Background MSCTRAIL is a cell-based therapy consisting of human allogeneic umbilical cord-derived MSCs genetically modified to express the anti-cancer protein TRAIL. Though cell-based therapies are typically designed with a target tissue in mind, delivery is rarely assessed due to a lack of translatable non-invasive imaging approaches. In this preclinical study, we demonstrate(89)Zr-oxine labelling and PET-CT imaging as a potential clinical solution for non-invasively tracking MSCTRAIL biodistribution. Future implementation of this technique should improve our understanding of MSCTRAIL during its evaluation as a therapy for metastatic lung adenocarcinoma. Methods MSCTRAIL were radiolabelled with(89)Zr-oxine and assayed for viability, phenotype, and therapeutic efficacy post-labelling. PET-CT imaging of(89)Zr-oxine-labelled MSCTRAIL was performed in a mouse model of lung cancer following intravenous injection, and biodistribution was confirmed ex vivo. Results MSCTRAIL retained the therapeutic efficacy and MSC phenotype in vitro at labelling amounts up to and above those required for clinical imaging. The effect of(89)Zr-oxine labelling on cell proliferation rate was amount- and time-dependent. PET-CT imaging showed delivery of MSCTRAIL to the lungs in a mouse model of lung cancer up to 1 week post-injection, validated by in vivo bioluminescence imaging, autoradiography, and fluorescence imaging on tissue sections. Conclusions Zr-89-oxine labelling and PET-CT imaging present a potential method of evaluating the biodistribution of new cell therapies in patients, including MSCTRAIL. This offers to improve understanding of cell therapies, including mechanism of action, migration dynamics, and inter-patient variability. |
doi_str_mv | 10.1186/s13287-020-01770-z |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2418119419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A628015324</galeid><doaj_id>oai_doaj_org_article_77b713e5b32c4ca89d12cd9d999e858f</doaj_id><sourcerecordid>A628015324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-6483b3706bad6a528e9f122c50d6bacb18a4bdf68b3b298bbd8fbfe870a613e43</originalsourceid><addsrcrecordid>eNqNkl9rFDEUxQdRbKn9Aj4NCKLI1PyZZDIvwrJUXVhR2vVFhJBk7uymzE7WJLPd9tOb6ZbaFR9MHhJufuckuZwse4nRGcaCvw-YElEViKAC4apCxe2T7BhXrCo4w-Tpo_1RdhrCFUqDUoR4-Tw7ooQJXiJ6nP2cD_0yb6CzW_A3uWvzL5fTkMNu4yEEm85UH21hVG_A5xvvItg-X1xMZvN8a8OgOhugya9tXOWi_uELt7M95N_OF8V08SJ71qouwOn9epJ9_3i-mH4u5l8_zaaTeWEYZbHgpaCaVohr1XDFiIC6xYQYhppUMhoLVeqm5UJTTWqhdSNa3YKokOKYQklPstnet3HqSm68XSt_I52y8q7g_FIqH63pQFaVrpKGaUpMaZSoG0xMUzd1XYNgok1eH_Zem0GvoTHQR6-6A9PDk96u5NJtZUWxYKROBm_uDbz7NUCIcm2Dga5TPbghSFJigXFd4hF99Rd65Qbfp1YlipQVrzlhf6ilSh-wfevSvWY0lRNOBMKMkrEHZ_-g0mxgbY3robWpfiB4eyBITIRdXKohBDm7vDhkXz9iV6C6uAquG6J1fTgEyR403oXgoX1oHEZyzK3c51am3Mq73MrbJHq3F12Ddm0wFlLYHoQpt6xkvMZkjPDYNPH_9NRGNT5y6oY-0t8lxfuc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424769625</pqid></control><display><type>article</type><title>Lung delivery of MSCs expressing anti-cancer protein TRAIL visualised with 89Zr-oxine PET-CT</title><source>DOAJ Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerNature Journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>PubMed Central Open Access</source><creator>Patrick, P. Stephen ; Kolluri, Krishna K. ; Zaw Thin, May ; Edwards, Adam ; Sage, Elizabeth K. ; Sanderson, Tom ; Weil, Benjamin D. ; Dickson, John C. ; Lythgoe, Mark F. ; Lowdell, Mark ; Janes, Sam M. ; Kalber, Tammy L.</creator><creatorcontrib>Patrick, P. Stephen ; Kolluri, Krishna K. ; Zaw Thin, May ; Edwards, Adam ; Sage, Elizabeth K. ; Sanderson, Tom ; Weil, Benjamin D. ; Dickson, John C. ; Lythgoe, Mark F. ; Lowdell, Mark ; Janes, Sam M. ; Kalber, Tammy L.</creatorcontrib><description>Background MSCTRAIL is a cell-based therapy consisting of human allogeneic umbilical cord-derived MSCs genetically modified to express the anti-cancer protein TRAIL. Though cell-based therapies are typically designed with a target tissue in mind, delivery is rarely assessed due to a lack of translatable non-invasive imaging approaches. In this preclinical study, we demonstrate(89)Zr-oxine labelling and PET-CT imaging as a potential clinical solution for non-invasively tracking MSCTRAIL biodistribution. Future implementation of this technique should improve our understanding of MSCTRAIL during its evaluation as a therapy for metastatic lung adenocarcinoma. Methods MSCTRAIL were radiolabelled with(89)Zr-oxine and assayed for viability, phenotype, and therapeutic efficacy post-labelling. PET-CT imaging of(89)Zr-oxine-labelled MSCTRAIL was performed in a mouse model of lung cancer following intravenous injection, and biodistribution was confirmed ex vivo. Results MSCTRAIL retained the therapeutic efficacy and MSC phenotype in vitro at labelling amounts up to and above those required for clinical imaging. The effect of(89)Zr-oxine labelling on cell proliferation rate was amount- and time-dependent. PET-CT imaging showed delivery of MSCTRAIL to the lungs in a mouse model of lung cancer up to 1 week post-injection, validated by in vivo bioluminescence imaging, autoradiography, and fluorescence imaging on tissue sections. Conclusions Zr-89-oxine labelling and PET-CT imaging present a potential method of evaluating the biodistribution of new cell therapies in patients, including MSCTRAIL. This offers to improve understanding of cell therapies, including mechanism of action, migration dynamics, and inter-patient variability.</description><identifier>ISSN: 1757-6512</identifier><identifier>EISSN: 1757-6512</identifier><identifier>DOI: 10.1186/s13287-020-01770-z</identifier><identifier>PMID: 32586403</identifier><language>eng</language><publisher>LONDON: Springer Nature</publisher><subject>89Zr-oxine ; Adenocarcinoma ; Apoptosis ; Autoradiography ; Bioluminescence ; Cancer ; Care and treatment ; Cell & Tissue Engineering ; Cell Biology ; Cell culture ; Cell proliferation ; Cell therapy ; Cell tracking ; Computed tomography ; Cord-derived MSCs ; CT imaging ; Dosimetry ; Flow cytometry ; Genetically modified organisms ; Health aspects ; Injection ; Intravenous administration ; Labeling ; Life Sciences & Biomedicine ; Lung cancer ; Medicine, Research & Experimental ; Metastases ; Metastasis ; PET-CT ; Phenotypes ; Plasmids ; Research & Experimental Medicine ; Science & Technology ; TRAIL ; Umbilical cord</subject><ispartof>Stem cell research & therapy, 2020-06, Vol.11 (1), p.1-256, Article 256</ispartof><rights>COPYRIGHT 2020 BioMed Central Ltd.</rights><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>36</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000545691200009</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c535t-6483b3706bad6a528e9f122c50d6bacb18a4bdf68b3b298bbd8fbfe870a613e43</citedby><cites>FETCH-LOGICAL-c535t-6483b3706bad6a528e9f122c50d6bacb18a4bdf68b3b298bbd8fbfe870a613e43</cites><orcidid>0000-0002-7155-1729 ; 0000-0002-9009-421X ; 0000-0003-0036-2776 ; 0000-0002-1793-3822</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7318529/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7318529/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2118,27933,27934,28257,53800,53802</link.rule.ids></links><search><creatorcontrib>Patrick, P. Stephen</creatorcontrib><creatorcontrib>Kolluri, Krishna K.</creatorcontrib><creatorcontrib>Zaw Thin, May</creatorcontrib><creatorcontrib>Edwards, Adam</creatorcontrib><creatorcontrib>Sage, Elizabeth K.</creatorcontrib><creatorcontrib>Sanderson, Tom</creatorcontrib><creatorcontrib>Weil, Benjamin D.</creatorcontrib><creatorcontrib>Dickson, John C.</creatorcontrib><creatorcontrib>Lythgoe, Mark F.</creatorcontrib><creatorcontrib>Lowdell, Mark</creatorcontrib><creatorcontrib>Janes, Sam M.</creatorcontrib><creatorcontrib>Kalber, Tammy L.</creatorcontrib><title>Lung delivery of MSCs expressing anti-cancer protein TRAIL visualised with 89Zr-oxine PET-CT</title><title>Stem cell research & therapy</title><addtitle>STEM CELL RES THER</addtitle><description>Background MSCTRAIL is a cell-based therapy consisting of human allogeneic umbilical cord-derived MSCs genetically modified to express the anti-cancer protein TRAIL. Though cell-based therapies are typically designed with a target tissue in mind, delivery is rarely assessed due to a lack of translatable non-invasive imaging approaches. In this preclinical study, we demonstrate(89)Zr-oxine labelling and PET-CT imaging as a potential clinical solution for non-invasively tracking MSCTRAIL biodistribution. Future implementation of this technique should improve our understanding of MSCTRAIL during its evaluation as a therapy for metastatic lung adenocarcinoma. Methods MSCTRAIL were radiolabelled with(89)Zr-oxine and assayed for viability, phenotype, and therapeutic efficacy post-labelling. PET-CT imaging of(89)Zr-oxine-labelled MSCTRAIL was performed in a mouse model of lung cancer following intravenous injection, and biodistribution was confirmed ex vivo. Results MSCTRAIL retained the therapeutic efficacy and MSC phenotype in vitro at labelling amounts up to and above those required for clinical imaging. The effect of(89)Zr-oxine labelling on cell proliferation rate was amount- and time-dependent. PET-CT imaging showed delivery of MSCTRAIL to the lungs in a mouse model of lung cancer up to 1 week post-injection, validated by in vivo bioluminescence imaging, autoradiography, and fluorescence imaging on tissue sections. Conclusions Zr-89-oxine labelling and PET-CT imaging present a potential method of evaluating the biodistribution of new cell therapies in patients, including MSCTRAIL. This offers to improve understanding of cell therapies, including mechanism of action, migration dynamics, and inter-patient variability.</description><subject>89Zr-oxine</subject><subject>Adenocarcinoma</subject><subject>Apoptosis</subject><subject>Autoradiography</subject><subject>Bioluminescence</subject><subject>Cancer</subject><subject>Care and treatment</subject><subject>Cell & Tissue Engineering</subject><subject>Cell Biology</subject><subject>Cell culture</subject><subject>Cell proliferation</subject><subject>Cell therapy</subject><subject>Cell tracking</subject><subject>Computed tomography</subject><subject>Cord-derived MSCs</subject><subject>CT imaging</subject><subject>Dosimetry</subject><subject>Flow cytometry</subject><subject>Genetically modified organisms</subject><subject>Health aspects</subject><subject>Injection</subject><subject>Intravenous administration</subject><subject>Labeling</subject><subject>Life Sciences & Biomedicine</subject><subject>Lung cancer</subject><subject>Medicine, Research & Experimental</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>PET-CT</subject><subject>Phenotypes</subject><subject>Plasmids</subject><subject>Research & Experimental Medicine</subject><subject>Science & Technology</subject><subject>TRAIL</subject><subject>Umbilical cord</subject><issn>1757-6512</issn><issn>1757-6512</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl9rFDEUxQdRbKn9Aj4NCKLI1PyZZDIvwrJUXVhR2vVFhJBk7uymzE7WJLPd9tOb6ZbaFR9MHhJufuckuZwse4nRGcaCvw-YElEViKAC4apCxe2T7BhXrCo4w-Tpo_1RdhrCFUqDUoR4-Tw7ooQJXiJ6nP2cD_0yb6CzW_A3uWvzL5fTkMNu4yEEm85UH21hVG_A5xvvItg-X1xMZvN8a8OgOhugya9tXOWi_uELt7M95N_OF8V08SJ71qouwOn9epJ9_3i-mH4u5l8_zaaTeWEYZbHgpaCaVohr1XDFiIC6xYQYhppUMhoLVeqm5UJTTWqhdSNa3YKokOKYQklPstnet3HqSm68XSt_I52y8q7g_FIqH63pQFaVrpKGaUpMaZSoG0xMUzd1XYNgok1eH_Zem0GvoTHQR6-6A9PDk96u5NJtZUWxYKROBm_uDbz7NUCIcm2Dga5TPbghSFJigXFd4hF99Rd65Qbfp1YlipQVrzlhf6ilSh-wfevSvWY0lRNOBMKMkrEHZ_-g0mxgbY3robWpfiB4eyBITIRdXKohBDm7vDhkXz9iV6C6uAquG6J1fTgEyR403oXgoX1oHEZyzK3c51am3Mq73MrbJHq3F12Ddm0wFlLYHoQpt6xkvMZkjPDYNPH_9NRGNT5y6oY-0t8lxfuc</recordid><startdate>20200626</startdate><enddate>20200626</enddate><creator>Patrick, P. Stephen</creator><creator>Kolluri, Krishna K.</creator><creator>Zaw Thin, May</creator><creator>Edwards, Adam</creator><creator>Sage, Elizabeth K.</creator><creator>Sanderson, Tom</creator><creator>Weil, Benjamin D.</creator><creator>Dickson, John C.</creator><creator>Lythgoe, Mark F.</creator><creator>Lowdell, Mark</creator><creator>Janes, Sam M.</creator><creator>Kalber, Tammy L.</creator><general>Springer Nature</general><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7155-1729</orcidid><orcidid>https://orcid.org/0000-0002-9009-421X</orcidid><orcidid>https://orcid.org/0000-0003-0036-2776</orcidid><orcidid>https://orcid.org/0000-0002-1793-3822</orcidid></search><sort><creationdate>20200626</creationdate><title>Lung delivery of MSCs expressing anti-cancer protein TRAIL visualised with 89Zr-oxine PET-CT</title><author>Patrick, P. Stephen ; Kolluri, Krishna K. ; Zaw Thin, May ; Edwards, Adam ; Sage, Elizabeth K. ; Sanderson, Tom ; Weil, Benjamin D. ; Dickson, John C. ; Lythgoe, Mark F. ; Lowdell, Mark ; Janes, Sam M. ; Kalber, Tammy L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-6483b3706bad6a528e9f122c50d6bacb18a4bdf68b3b298bbd8fbfe870a613e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>89Zr-oxine</topic><topic>Adenocarcinoma</topic><topic>Apoptosis</topic><topic>Autoradiography</topic><topic>Bioluminescence</topic><topic>Cancer</topic><topic>Care and treatment</topic><topic>Cell & Tissue Engineering</topic><topic>Cell Biology</topic><topic>Cell culture</topic><topic>Cell proliferation</topic><topic>Cell therapy</topic><topic>Cell tracking</topic><topic>Computed tomography</topic><topic>Cord-derived MSCs</topic><topic>CT imaging</topic><topic>Dosimetry</topic><topic>Flow cytometry</topic><topic>Genetically modified organisms</topic><topic>Health aspects</topic><topic>Injection</topic><topic>Intravenous administration</topic><topic>Labeling</topic><topic>Life Sciences & Biomedicine</topic><topic>Lung cancer</topic><topic>Medicine, Research & Experimental</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>PET-CT</topic><topic>Phenotypes</topic><topic>Plasmids</topic><topic>Research & Experimental Medicine</topic><topic>Science & Technology</topic><topic>TRAIL</topic><topic>Umbilical cord</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patrick, P. Stephen</creatorcontrib><creatorcontrib>Kolluri, Krishna K.</creatorcontrib><creatorcontrib>Zaw Thin, May</creatorcontrib><creatorcontrib>Edwards, Adam</creatorcontrib><creatorcontrib>Sage, Elizabeth K.</creatorcontrib><creatorcontrib>Sanderson, Tom</creatorcontrib><creatorcontrib>Weil, Benjamin D.</creatorcontrib><creatorcontrib>Dickson, John C.</creatorcontrib><creatorcontrib>Lythgoe, Mark F.</creatorcontrib><creatorcontrib>Lowdell, Mark</creatorcontrib><creatorcontrib>Janes, Sam M.</creatorcontrib><creatorcontrib>Kalber, Tammy L.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Stem cell research & therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patrick, P. Stephen</au><au>Kolluri, Krishna K.</au><au>Zaw Thin, May</au><au>Edwards, Adam</au><au>Sage, Elizabeth K.</au><au>Sanderson, Tom</au><au>Weil, Benjamin D.</au><au>Dickson, John C.</au><au>Lythgoe, Mark F.</au><au>Lowdell, Mark</au><au>Janes, Sam M.</au><au>Kalber, Tammy L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lung delivery of MSCs expressing anti-cancer protein TRAIL visualised with 89Zr-oxine PET-CT</atitle><jtitle>Stem cell research & therapy</jtitle><stitle>STEM CELL RES THER</stitle><date>2020-06-26</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>1</spage><epage>256</epage><pages>1-256</pages><artnum>256</artnum><issn>1757-6512</issn><eissn>1757-6512</eissn><abstract>Background MSCTRAIL is a cell-based therapy consisting of human allogeneic umbilical cord-derived MSCs genetically modified to express the anti-cancer protein TRAIL. Though cell-based therapies are typically designed with a target tissue in mind, delivery is rarely assessed due to a lack of translatable non-invasive imaging approaches. In this preclinical study, we demonstrate(89)Zr-oxine labelling and PET-CT imaging as a potential clinical solution for non-invasively tracking MSCTRAIL biodistribution. Future implementation of this technique should improve our understanding of MSCTRAIL during its evaluation as a therapy for metastatic lung adenocarcinoma. Methods MSCTRAIL were radiolabelled with(89)Zr-oxine and assayed for viability, phenotype, and therapeutic efficacy post-labelling. PET-CT imaging of(89)Zr-oxine-labelled MSCTRAIL was performed in a mouse model of lung cancer following intravenous injection, and biodistribution was confirmed ex vivo. Results MSCTRAIL retained the therapeutic efficacy and MSC phenotype in vitro at labelling amounts up to and above those required for clinical imaging. The effect of(89)Zr-oxine labelling on cell proliferation rate was amount- and time-dependent. PET-CT imaging showed delivery of MSCTRAIL to the lungs in a mouse model of lung cancer up to 1 week post-injection, validated by in vivo bioluminescence imaging, autoradiography, and fluorescence imaging on tissue sections. Conclusions Zr-89-oxine labelling and PET-CT imaging present a potential method of evaluating the biodistribution of new cell therapies in patients, including MSCTRAIL. This offers to improve understanding of cell therapies, including mechanism of action, migration dynamics, and inter-patient variability.</abstract><cop>LONDON</cop><pub>Springer Nature</pub><pmid>32586403</pmid><doi>10.1186/s13287-020-01770-z</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7155-1729</orcidid><orcidid>https://orcid.org/0000-0002-9009-421X</orcidid><orcidid>https://orcid.org/0000-0003-0036-2776</orcidid><orcidid>https://orcid.org/0000-0002-1793-3822</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1757-6512 |
ispartof | Stem cell research & therapy, 2020-06, Vol.11 (1), p.1-256, Article 256 |
issn | 1757-6512 1757-6512 |
language | eng |
recordid | cdi_proquest_miscellaneous_2418119419 |
source | DOAJ Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerNature Journals; PubMed Central; Springer Nature OA/Free Journals; PubMed Central Open Access |
subjects | 89Zr-oxine Adenocarcinoma Apoptosis Autoradiography Bioluminescence Cancer Care and treatment Cell & Tissue Engineering Cell Biology Cell culture Cell proliferation Cell therapy Cell tracking Computed tomography Cord-derived MSCs CT imaging Dosimetry Flow cytometry Genetically modified organisms Health aspects Injection Intravenous administration Labeling Life Sciences & Biomedicine Lung cancer Medicine, Research & Experimental Metastases Metastasis PET-CT Phenotypes Plasmids Research & Experimental Medicine Science & Technology TRAIL Umbilical cord |
title | Lung delivery of MSCs expressing anti-cancer protein TRAIL visualised with 89Zr-oxine PET-CT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T22%3A04%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lung%20delivery%20of%20MSCs%20expressing%20anti-cancer%20protein%20TRAIL%20visualised%20with%2089Zr-oxine%20PET-CT&rft.jtitle=Stem%20cell%20research%20&%20therapy&rft.au=Patrick,%20P.%20Stephen&rft.date=2020-06-26&rft.volume=11&rft.issue=1&rft.spage=1&rft.epage=256&rft.pages=1-256&rft.artnum=256&rft.issn=1757-6512&rft.eissn=1757-6512&rft_id=info:doi/10.1186/s13287-020-01770-z&rft_dat=%3Cgale_proqu%3EA628015324%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424769625&rft_id=info:pmid/32586403&rft_galeid=A628015324&rft_doaj_id=oai_doaj_org_article_77b713e5b32c4ca89d12cd9d999e858f&rfr_iscdi=true |