Do soil property variations affect dicyandiamide efficiency in inhibiting nitrification and minimizing carbon dioxide emissions?

Nitrification inhibitors (NIs) are used to retard the nitrification process and reduce nitrogen (N) losses. However, the effects of soil properties on NI efficacy are less clear. Moreover, the direct and indirect effects of soil property variations on NI efficiency in minimizing carbon dioxide (CO2)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecotoxicology and environmental safety 2020-10, Vol.202, p.110875-110875, Article 110875
Hauptverfasser: Elrys, Ahmed S., Raza, Sajjad, Elnahal, Ahmed S.M., Na, Miao, Ahmed, Muneer, Zhou, Jianbin, Chen, Zhujun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nitrification inhibitors (NIs) are used to retard the nitrification process and reduce nitrogen (N) losses. However, the effects of soil properties on NI efficacy are less clear. Moreover, the direct and indirect effects of soil property variations on NI efficiency in minimizing carbon dioxide (CO2) emissions have not been previously studied. An incubation experiment was conducted for 40 days with two treatments, N (200 mg N-urea kg−1) and N + dicyandiamide (DCD) (20 mg DCD kg−1), and a control group (without the N) to investigate the response of ammonia-oxidizing bacteria (AOB) and archaea (AOA) to DCD application and the consequences for CO2, nitrous oxide (N2O) and ammonia (NH3) emissions from six soils from the Loess Plateau with different properties. The nitrification process completed within 6–18 days for the N treatment and within 30->40 days for the N + DCD treatment. AOB increased significantly with N fertilizer application, while this effect was inhibited in soils when DCD was applied. AOA was not sensitive to N fertilizer and DCD application. The nitrification rate was positively correlated with the clay (p 
ISSN:0147-6513
1090-2414
DOI:10.1016/j.ecoenv.2020.110875