A multistate joint model for interval‐censored event‐history data subject to within‐unit clustering and informative missingness, with application to neurocysticercosis research
We propose a multistate joint model to analyze interval‐censored event‐history data subject to within‐unit clustering and nonignorable missing data. The model is motivated by a study of the neurocysticercosis (NC) cyst evolution at the cyst‐level, taking into account the multiple cysts phases with i...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 2020-10, Vol.39 (23), p.3195-3206 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3206 |
---|---|
container_issue | 23 |
container_start_page | 3195 |
container_title | Statistics in medicine |
container_volume | 39 |
creator | Zhang, Hongbin Kelvin, Elizabeth A. Carpio, Arturo Allen Hauser, W. |
description | We propose a multistate joint model to analyze interval‐censored event‐history data subject to within‐unit clustering and nonignorable missing data. The model is motivated by a study of the neurocysticercosis (NC) cyst evolution at the cyst‐level, taking into account the multiple cysts phases with intermittent missing data and loss to follow‐up, as well as the intra‐brain clustering of observations made on a predefined data collection schedule. Of particular interest in this study is the description of the process leading to cyst resolution, and whether this process varies by antiparasitic treatment. The model uses shared random effects to account for within‐brain correlation and to explain the hidden heterogeneity governing the missing data mechanism. We developed a likelihood‐based method using a Monte Carlo EM algorithm for the inference. The practical utility of the methods is illustrated using data from a randomized controlled trial on the effect of antiparasitic treatment with albendazole on NC cysts among patients from six hospitals in Ecuador. Simulation results demonstrate that the proposed methods perform well in the finite sample and misspecified models that ignore the data complexities could lead to substantial biases. |
doi_str_mv | 10.1002/sim.8663 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2417398383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2417398383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3493-1812d69e92207a092600c901e5f88f7872648e674e932ecb48fb6cb7e901e1d43</originalsourceid><addsrcrecordid>eNp1kc9u1DAQhy1ERZeCxBMgS1w4kGI7Tuwcq4o_lVpxAM6R40xYrxx78Thb7a2P0KfhgXgSvG0BCYnTaGa--TTSj5AXnJ1yxsRbdPOpbtv6EVlx1qmKiUY_JismlKpaxZtj8hRxwxjnjVBPyHFd9lKKZkV-nNF58dlhNhnoJrqQ6RxH8HSKiZYO0s74nze3FgLGBCOFHYRcButyE9OejiYbisuwAZtpjvTa5bULBViCy9T6BYvDhW_UhLEIi3Y22e2Azg6xzAMgvrm7oma79c6WbQwHU4AlRbvH7CwkG9EhTYBgkl0_I0eT8QjPH-oJ-fr-3Zfzj9Xlpw8X52eXla1lV1dcczG2HXRCMGVYJ1rGbMc4NJPWk9JKtFJDqyR0tQA7SD0NrR0UHBg-yvqEvL73blP8vgDmvnxtwXsTIC7YC8lV3ela1wV99Q-6iUsK5btCSd7wRnH-V2hTREww9dvkZpP2PWf9Icu-ZNkfsizoywfhMsww_gF_h1eA6h64dh72_xX1ny-u7oS_ABAZr6I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441515711</pqid></control><display><type>article</type><title>A multistate joint model for interval‐censored event‐history data subject to within‐unit clustering and informative missingness, with application to neurocysticercosis research</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Hongbin ; Kelvin, Elizabeth A. ; Carpio, Arturo ; Allen Hauser, W.</creator><creatorcontrib>Zhang, Hongbin ; Kelvin, Elizabeth A. ; Carpio, Arturo ; Allen Hauser, W.</creatorcontrib><description>We propose a multistate joint model to analyze interval‐censored event‐history data subject to within‐unit clustering and nonignorable missing data. The model is motivated by a study of the neurocysticercosis (NC) cyst evolution at the cyst‐level, taking into account the multiple cysts phases with intermittent missing data and loss to follow‐up, as well as the intra‐brain clustering of observations made on a predefined data collection schedule. Of particular interest in this study is the description of the process leading to cyst resolution, and whether this process varies by antiparasitic treatment. The model uses shared random effects to account for within‐brain correlation and to explain the hidden heterogeneity governing the missing data mechanism. We developed a likelihood‐based method using a Monte Carlo EM algorithm for the inference. The practical utility of the methods is illustrated using data from a randomized controlled trial on the effect of antiparasitic treatment with albendazole on NC cysts among patients from six hospitals in Ecuador. Simulation results demonstrate that the proposed methods perform well in the finite sample and misspecified models that ignore the data complexities could lead to substantial biases.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.8663</identifier><identifier>PMID: 32584425</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Cluster Analysis ; Cysts ; frailty survival model ; Humans ; interval‐censoring ; Likelihood Functions ; Models, Statistical ; Monte Carlo Method ; multistate joint model ; neurocysticercosis ; Neurocysticercosis - drug therapy ; nonignorable missingness</subject><ispartof>Statistics in medicine, 2020-10, Vol.39 (23), p.3195-3206</ispartof><rights>2020 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3493-1812d69e92207a092600c901e5f88f7872648e674e932ecb48fb6cb7e901e1d43</citedby><cites>FETCH-LOGICAL-c3493-1812d69e92207a092600c901e5f88f7872648e674e932ecb48fb6cb7e901e1d43</cites><orcidid>0000-0002-2156-1005</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.8663$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.8663$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32584425$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Hongbin</creatorcontrib><creatorcontrib>Kelvin, Elizabeth A.</creatorcontrib><creatorcontrib>Carpio, Arturo</creatorcontrib><creatorcontrib>Allen Hauser, W.</creatorcontrib><title>A multistate joint model for interval‐censored event‐history data subject to within‐unit clustering and informative missingness, with application to neurocysticercosis research</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>We propose a multistate joint model to analyze interval‐censored event‐history data subject to within‐unit clustering and nonignorable missing data. The model is motivated by a study of the neurocysticercosis (NC) cyst evolution at the cyst‐level, taking into account the multiple cysts phases with intermittent missing data and loss to follow‐up, as well as the intra‐brain clustering of observations made on a predefined data collection schedule. Of particular interest in this study is the description of the process leading to cyst resolution, and whether this process varies by antiparasitic treatment. The model uses shared random effects to account for within‐brain correlation and to explain the hidden heterogeneity governing the missing data mechanism. We developed a likelihood‐based method using a Monte Carlo EM algorithm for the inference. The practical utility of the methods is illustrated using data from a randomized controlled trial on the effect of antiparasitic treatment with albendazole on NC cysts among patients from six hospitals in Ecuador. Simulation results demonstrate that the proposed methods perform well in the finite sample and misspecified models that ignore the data complexities could lead to substantial biases.</description><subject>Cluster Analysis</subject><subject>Cysts</subject><subject>frailty survival model</subject><subject>Humans</subject><subject>interval‐censoring</subject><subject>Likelihood Functions</subject><subject>Models, Statistical</subject><subject>Monte Carlo Method</subject><subject>multistate joint model</subject><subject>neurocysticercosis</subject><subject>Neurocysticercosis - drug therapy</subject><subject>nonignorable missingness</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9u1DAQhy1ERZeCxBMgS1w4kGI7Tuwcq4o_lVpxAM6R40xYrxx78Thb7a2P0KfhgXgSvG0BCYnTaGa--TTSj5AXnJ1yxsRbdPOpbtv6EVlx1qmKiUY_JismlKpaxZtj8hRxwxjnjVBPyHFd9lKKZkV-nNF58dlhNhnoJrqQ6RxH8HSKiZYO0s74nze3FgLGBCOFHYRcButyE9OejiYbisuwAZtpjvTa5bULBViCy9T6BYvDhW_UhLEIi3Y22e2Azg6xzAMgvrm7oma79c6WbQwHU4AlRbvH7CwkG9EhTYBgkl0_I0eT8QjPH-oJ-fr-3Zfzj9Xlpw8X52eXla1lV1dcczG2HXRCMGVYJ1rGbMc4NJPWk9JKtFJDqyR0tQA7SD0NrR0UHBg-yvqEvL73blP8vgDmvnxtwXsTIC7YC8lV3ela1wV99Q-6iUsK5btCSd7wRnH-V2hTREww9dvkZpP2PWf9Icu-ZNkfsizoywfhMsww_gF_h1eA6h64dh72_xX1ny-u7oS_ABAZr6I</recordid><startdate>20201015</startdate><enddate>20201015</enddate><creator>Zhang, Hongbin</creator><creator>Kelvin, Elizabeth A.</creator><creator>Carpio, Arturo</creator><creator>Allen Hauser, W.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2156-1005</orcidid></search><sort><creationdate>20201015</creationdate><title>A multistate joint model for interval‐censored event‐history data subject to within‐unit clustering and informative missingness, with application to neurocysticercosis research</title><author>Zhang, Hongbin ; Kelvin, Elizabeth A. ; Carpio, Arturo ; Allen Hauser, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3493-1812d69e92207a092600c901e5f88f7872648e674e932ecb48fb6cb7e901e1d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cluster Analysis</topic><topic>Cysts</topic><topic>frailty survival model</topic><topic>Humans</topic><topic>interval‐censoring</topic><topic>Likelihood Functions</topic><topic>Models, Statistical</topic><topic>Monte Carlo Method</topic><topic>multistate joint model</topic><topic>neurocysticercosis</topic><topic>Neurocysticercosis - drug therapy</topic><topic>nonignorable missingness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hongbin</creatorcontrib><creatorcontrib>Kelvin, Elizabeth A.</creatorcontrib><creatorcontrib>Carpio, Arturo</creatorcontrib><creatorcontrib>Allen Hauser, W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hongbin</au><au>Kelvin, Elizabeth A.</au><au>Carpio, Arturo</au><au>Allen Hauser, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multistate joint model for interval‐censored event‐history data subject to within‐unit clustering and informative missingness, with application to neurocysticercosis research</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2020-10-15</date><risdate>2020</risdate><volume>39</volume><issue>23</issue><spage>3195</spage><epage>3206</epage><pages>3195-3206</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>We propose a multistate joint model to analyze interval‐censored event‐history data subject to within‐unit clustering and nonignorable missing data. The model is motivated by a study of the neurocysticercosis (NC) cyst evolution at the cyst‐level, taking into account the multiple cysts phases with intermittent missing data and loss to follow‐up, as well as the intra‐brain clustering of observations made on a predefined data collection schedule. Of particular interest in this study is the description of the process leading to cyst resolution, and whether this process varies by antiparasitic treatment. The model uses shared random effects to account for within‐brain correlation and to explain the hidden heterogeneity governing the missing data mechanism. We developed a likelihood‐based method using a Monte Carlo EM algorithm for the inference. The practical utility of the methods is illustrated using data from a randomized controlled trial on the effect of antiparasitic treatment with albendazole on NC cysts among patients from six hospitals in Ecuador. Simulation results demonstrate that the proposed methods perform well in the finite sample and misspecified models that ignore the data complexities could lead to substantial biases.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32584425</pmid><doi>10.1002/sim.8663</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2156-1005</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2020-10, Vol.39 (23), p.3195-3206 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_proquest_miscellaneous_2417398383 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Cluster Analysis Cysts frailty survival model Humans interval‐censoring Likelihood Functions Models, Statistical Monte Carlo Method multistate joint model neurocysticercosis Neurocysticercosis - drug therapy nonignorable missingness |
title | A multistate joint model for interval‐censored event‐history data subject to within‐unit clustering and informative missingness, with application to neurocysticercosis research |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A13%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multistate%20joint%20model%20for%20interval%E2%80%90censored%20event%E2%80%90history%20data%20subject%20to%20within%E2%80%90unit%20clustering%20and%20informative%20missingness,%20with%20application%20to%20neurocysticercosis%20research&rft.jtitle=Statistics%20in%20medicine&rft.au=Zhang,%20Hongbin&rft.date=2020-10-15&rft.volume=39&rft.issue=23&rft.spage=3195&rft.epage=3206&rft.pages=3195-3206&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.8663&rft_dat=%3Cproquest_cross%3E2417398383%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441515711&rft_id=info:pmid/32584425&rfr_iscdi=true |