Icelike Vibrational Properties of Strong Hydrogen Bonds in Hydrated Lithium Nitrate

The hydrogen bond network accounts for many of the extraordinary physical properties of liquid water and ice. Its vibrational dynamics are quite complex in their entirety but can be accessed in detail by investigating small groups of only a few water molecules. Here, aqueous salt hydrates turned out...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2020-07, Vol.124 (28), p.5784-5789
Hauptverfasser: Hutzler, Daniel, Stallhofer, Klara, Kienberger, Reinhard, Riedle, Eberhard, Iglev, Hristo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5789
container_issue 28
container_start_page 5784
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 124
creator Hutzler, Daniel
Stallhofer, Klara
Kienberger, Reinhard
Riedle, Eberhard
Iglev, Hristo
description The hydrogen bond network accounts for many of the extraordinary physical properties of liquid water and ice. Its vibrational dynamics are quite complex in their entirety but can be accessed in detail by investigating small groups of only a few water molecules. Here, aqueous salt hydrates turned out to be an exceptional model system for water molecules arranged in well-defined geometrical structures that can be accessed by means of femtosecond spectroscopy of the OH stretching vibration. In this study, we find striking resemblance between the vibrational properties of three water molecules connected via strong hydrogen bonds in the trihydrate of LiNO3 and those of ordinary ice Ih. As in ice, the vibrations of the hydrate water molecules show ultrafast excited state dynamics that are strongly accelerated when proceeding from deuterated to neat H2O samples. The latter is analyzed by means of an additional relaxation channel that is due to Fermi resonance between the OH stretching vibration and the bend overtone accompanied by delocalization of the vibration over neighboring water molecules in the H2O species. Moreover, in the hydrate and ice samples severe spectral broadening is examined when comparing fundamental and excited state absorption bands. Here, proton delocalization along the strong hydrogen bonds is given as a possible underlying mechanism.
doi_str_mv 10.1021/acs.jpca.0c01588
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2416945898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2416945898</sourcerecordid><originalsourceid>FETCH-LOGICAL-a313t-c534ef58b86cfea0a44b9831e3ab2786dc26b1302f2679864168c968ce1518693</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqWwM3pkIMUfsWuPgIBWqgCpwGo5jlNc0jjYztD_HvdjZTjd6d29J90PgGuMJhgRfKdNnKx7oyfIIMyEOAEjzAgqGMHsNM9IyIJxKs_BRYxrhBCmpByB5dzY1v1Y-OWqoJPznW7he_C9DcnZCH0Dlyn4bgVn2zr4le3gg-_qCF23V3SyNVy49O2GDXx1aSdcgrNGt9FeHfsYfD4_fTzOisXby_zxflFoimkqDKOlbZioBDeN1UiXZSUFxZbqikwFrw3hFaaINIRPpeAl5sLIXBYzLLikY3BzyO2D_x1sTGrjYn6n1Z31Q1QkO2TJRA4dA3Q4NcHHGGyj-uA2OmwVRmrHT2V-asdPHflly-3Bst_4IWQy8f_zPz-_c44</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416945898</pqid></control><display><type>article</type><title>Icelike Vibrational Properties of Strong Hydrogen Bonds in Hydrated Lithium Nitrate</title><source>ACS Publications</source><creator>Hutzler, Daniel ; Stallhofer, Klara ; Kienberger, Reinhard ; Riedle, Eberhard ; Iglev, Hristo</creator><creatorcontrib>Hutzler, Daniel ; Stallhofer, Klara ; Kienberger, Reinhard ; Riedle, Eberhard ; Iglev, Hristo</creatorcontrib><description>The hydrogen bond network accounts for many of the extraordinary physical properties of liquid water and ice. Its vibrational dynamics are quite complex in their entirety but can be accessed in detail by investigating small groups of only a few water molecules. Here, aqueous salt hydrates turned out to be an exceptional model system for water molecules arranged in well-defined geometrical structures that can be accessed by means of femtosecond spectroscopy of the OH stretching vibration. In this study, we find striking resemblance between the vibrational properties of three water molecules connected via strong hydrogen bonds in the trihydrate of LiNO3 and those of ordinary ice Ih. As in ice, the vibrations of the hydrate water molecules show ultrafast excited state dynamics that are strongly accelerated when proceeding from deuterated to neat H2O samples. The latter is analyzed by means of an additional relaxation channel that is due to Fermi resonance between the OH stretching vibration and the bend overtone accompanied by delocalization of the vibration over neighboring water molecules in the H2O species. Moreover, in the hydrate and ice samples severe spectral broadening is examined when comparing fundamental and excited state absorption bands. Here, proton delocalization along the strong hydrogen bonds is given as a possible underlying mechanism.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.0c01588</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>A: Spectroscopy, Molecular Structure, and Quantum Chemistry</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2020-07, Vol.124 (28), p.5784-5789</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a313t-c534ef58b86cfea0a44b9831e3ab2786dc26b1302f2679864168c968ce1518693</citedby><cites>FETCH-LOGICAL-a313t-c534ef58b86cfea0a44b9831e3ab2786dc26b1302f2679864168c968ce1518693</cites><orcidid>0000-0001-6314-0156 ; 0000-0002-2672-5718 ; 0000-0001-9208-0068</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.0c01588$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.0c01588$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Hutzler, Daniel</creatorcontrib><creatorcontrib>Stallhofer, Klara</creatorcontrib><creatorcontrib>Kienberger, Reinhard</creatorcontrib><creatorcontrib>Riedle, Eberhard</creatorcontrib><creatorcontrib>Iglev, Hristo</creatorcontrib><title>Icelike Vibrational Properties of Strong Hydrogen Bonds in Hydrated Lithium Nitrate</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>The hydrogen bond network accounts for many of the extraordinary physical properties of liquid water and ice. Its vibrational dynamics are quite complex in their entirety but can be accessed in detail by investigating small groups of only a few water molecules. Here, aqueous salt hydrates turned out to be an exceptional model system for water molecules arranged in well-defined geometrical structures that can be accessed by means of femtosecond spectroscopy of the OH stretching vibration. In this study, we find striking resemblance between the vibrational properties of three water molecules connected via strong hydrogen bonds in the trihydrate of LiNO3 and those of ordinary ice Ih. As in ice, the vibrations of the hydrate water molecules show ultrafast excited state dynamics that are strongly accelerated when proceeding from deuterated to neat H2O samples. The latter is analyzed by means of an additional relaxation channel that is due to Fermi resonance between the OH stretching vibration and the bend overtone accompanied by delocalization of the vibration over neighboring water molecules in the H2O species. Moreover, in the hydrate and ice samples severe spectral broadening is examined when comparing fundamental and excited state absorption bands. Here, proton delocalization along the strong hydrogen bonds is given as a possible underlying mechanism.</description><subject>A: Spectroscopy, Molecular Structure, and Quantum Chemistry</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EEqWwM3pkIMUfsWuPgIBWqgCpwGo5jlNc0jjYztD_HvdjZTjd6d29J90PgGuMJhgRfKdNnKx7oyfIIMyEOAEjzAgqGMHsNM9IyIJxKs_BRYxrhBCmpByB5dzY1v1Y-OWqoJPznW7he_C9DcnZCH0Dlyn4bgVn2zr4le3gg-_qCF23V3SyNVy49O2GDXx1aSdcgrNGt9FeHfsYfD4_fTzOisXby_zxflFoimkqDKOlbZioBDeN1UiXZSUFxZbqikwFrw3hFaaINIRPpeAl5sLIXBYzLLikY3BzyO2D_x1sTGrjYn6n1Z31Q1QkO2TJRA4dA3Q4NcHHGGyj-uA2OmwVRmrHT2V-asdPHflly-3Bst_4IWQy8f_zPz-_c44</recordid><startdate>20200716</startdate><enddate>20200716</enddate><creator>Hutzler, Daniel</creator><creator>Stallhofer, Klara</creator><creator>Kienberger, Reinhard</creator><creator>Riedle, Eberhard</creator><creator>Iglev, Hristo</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6314-0156</orcidid><orcidid>https://orcid.org/0000-0002-2672-5718</orcidid><orcidid>https://orcid.org/0000-0001-9208-0068</orcidid></search><sort><creationdate>20200716</creationdate><title>Icelike Vibrational Properties of Strong Hydrogen Bonds in Hydrated Lithium Nitrate</title><author>Hutzler, Daniel ; Stallhofer, Klara ; Kienberger, Reinhard ; Riedle, Eberhard ; Iglev, Hristo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a313t-c534ef58b86cfea0a44b9831e3ab2786dc26b1302f2679864168c968ce1518693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>A: Spectroscopy, Molecular Structure, and Quantum Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hutzler, Daniel</creatorcontrib><creatorcontrib>Stallhofer, Klara</creatorcontrib><creatorcontrib>Kienberger, Reinhard</creatorcontrib><creatorcontrib>Riedle, Eberhard</creatorcontrib><creatorcontrib>Iglev, Hristo</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hutzler, Daniel</au><au>Stallhofer, Klara</au><au>Kienberger, Reinhard</au><au>Riedle, Eberhard</au><au>Iglev, Hristo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Icelike Vibrational Properties of Strong Hydrogen Bonds in Hydrated Lithium Nitrate</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2020-07-16</date><risdate>2020</risdate><volume>124</volume><issue>28</issue><spage>5784</spage><epage>5789</epage><pages>5784-5789</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>The hydrogen bond network accounts for many of the extraordinary physical properties of liquid water and ice. Its vibrational dynamics are quite complex in their entirety but can be accessed in detail by investigating small groups of only a few water molecules. Here, aqueous salt hydrates turned out to be an exceptional model system for water molecules arranged in well-defined geometrical structures that can be accessed by means of femtosecond spectroscopy of the OH stretching vibration. In this study, we find striking resemblance between the vibrational properties of three water molecules connected via strong hydrogen bonds in the trihydrate of LiNO3 and those of ordinary ice Ih. As in ice, the vibrations of the hydrate water molecules show ultrafast excited state dynamics that are strongly accelerated when proceeding from deuterated to neat H2O samples. The latter is analyzed by means of an additional relaxation channel that is due to Fermi resonance between the OH stretching vibration and the bend overtone accompanied by delocalization of the vibration over neighboring water molecules in the H2O species. Moreover, in the hydrate and ice samples severe spectral broadening is examined when comparing fundamental and excited state absorption bands. Here, proton delocalization along the strong hydrogen bonds is given as a possible underlying mechanism.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpca.0c01588</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6314-0156</orcidid><orcidid>https://orcid.org/0000-0002-2672-5718</orcidid><orcidid>https://orcid.org/0000-0001-9208-0068</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2020-07, Vol.124 (28), p.5784-5789
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_2416945898
source ACS Publications
subjects A: Spectroscopy, Molecular Structure, and Quantum Chemistry
title Icelike Vibrational Properties of Strong Hydrogen Bonds in Hydrated Lithium Nitrate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A53%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Icelike%20Vibrational%20Properties%20of%20Strong%20Hydrogen%20Bonds%20in%20Hydrated%20Lithium%20Nitrate&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Hutzler,%20Daniel&rft.date=2020-07-16&rft.volume=124&rft.issue=28&rft.spage=5784&rft.epage=5789&rft.pages=5784-5789&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.0c01588&rft_dat=%3Cproquest_cross%3E2416945898%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2416945898&rft_id=info:pmid/&rfr_iscdi=true