Characterizing white matter connectivity in Alzheimer's disease and mild cognitive impairment: An automated fiber quantification analysis with two independent datasets

Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by progressive dementia. Diffusion tensor imaging (DTI) has been widely used to show structural integrity and delineate white matter (WM) degeneration in AD. The automated fiber quantification (AFQ) method is a fully...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cortex 2020-08, Vol.129, p.390-405
Hauptverfasser: Dou, Xuejiao, Yao, Hongxiang, Feng, Feng, Wang, Pan, Zhou, Bo, Jin, Dan, Yang, Zhengyi, Li, Jin, Zhao, Cui, Wang, Luning, An, Ningyu, Liu, Bing, Zhang, Xi, Liu, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 405
container_issue
container_start_page 390
container_title Cortex
container_volume 129
creator Dou, Xuejiao
Yao, Hongxiang
Feng, Feng
Wang, Pan
Zhou, Bo
Jin, Dan
Yang, Zhengyi
Li, Jin
Zhao, Cui
Wang, Luning
An, Ningyu
Liu, Bing
Zhang, Xi
Liu, Yong
description Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by progressive dementia. Diffusion tensor imaging (DTI) has been widely used to show structural integrity and delineate white matter (WM) degeneration in AD. The automated fiber quantification (AFQ) method is a fully automated approach that can rapidly and reliably identify major WM fiber tracts and evaluate WM properties. The main aim of this study was to assess WM integrity and abnormities in a cohort of patients with amnestic mild cognitive impairment (aMCI) and AD as well as normal controls (NCs). For this purpose, we first used AFQ to identify 20 major WM tracts and assessed WM integrity and abnormalities in a cohort of 120 subjects (39 NCs, 34 aMCI patients and 47 AD patients) in a discovery dataset and 122 subjects (43 NCs, 37 aMCI patients and 42 AD patients) in a replicated dataset. Pointwise differences along WM tracts were identified in the discovery dataset and simultaneously confirmed in the replicated dataset. Next, we investigated the utility of DTI measures along WM tracts as features to distinguish patients with AD from NCs via multilevel cross validation using a support vector machine. Correlation analysis revealed the identified microstructural WM alterations and classification output to be highly associated with cognitive ability in the patient groups, suggesting that they may be a robust biomarker of AD. This systematic study provides a pipeline to examine WM integrity and its potential clinical application in AD and may be useful for studying other neurological and psychiatric disorders.
doi_str_mv 10.1016/j.cortex.2020.03.032
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2416943947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010945220302082</els_id><sourcerecordid>2416943947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-51d563e1340a269a876873d058ca4bb513d4c1f7023b69e77809ffa096c29eab3</originalsourceid><addsrcrecordid>eNp9kd2KFDEQhYMo7uzqG4jkTm96zF__eSEMg6vCgjd6HdJJ9U4N3clskt5x9oV8TbPM6qVQVEHlq3MIh5A3nK05482H_dqGmOHXWjDB1kyWEs_IivetrDrOxHOyYoyzqle1uCCXKe1ZAbu6fkkupKhb1SmxIr-3OxONzRDxAf0tPe4wA51NLhtqg_dgM95jPlH0dDM97ABniO8SdZjAJKDGOzrj5Ap867GwQHE-GIwz-PyRbjw1Sw5FEBwdcSiqd4vxGUe0JmMoz95Mp4SJHjHvaD6G4uTgAKX5TJ3JxSWnV-TFaKYEr5_mFfl5_fnH9mt18_3Lt-3mprKKy1zV3NWNBC4VM6LpTdc2XSsdqztr1DDUXDpl-dgyIYemh7btWD-OhvWNFT2YQV6R92fdQwx3C6SsZ0wWpsl4CEvSQvGmV7JXbUHVGbUxpBRh1IeIs4knzZl-jEjv9Tki_RiRZrKUKGdvnxyWYQb37-hvJgX4dAag_PMeIepkEbwFh7GkoV3A_zv8ARqLqMI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416943947</pqid></control><display><type>article</type><title>Characterizing white matter connectivity in Alzheimer's disease and mild cognitive impairment: An automated fiber quantification analysis with two independent datasets</title><source>Access via ScienceDirect (Elsevier)</source><creator>Dou, Xuejiao ; Yao, Hongxiang ; Feng, Feng ; Wang, Pan ; Zhou, Bo ; Jin, Dan ; Yang, Zhengyi ; Li, Jin ; Zhao, Cui ; Wang, Luning ; An, Ningyu ; Liu, Bing ; Zhang, Xi ; Liu, Yong</creator><creatorcontrib>Dou, Xuejiao ; Yao, Hongxiang ; Feng, Feng ; Wang, Pan ; Zhou, Bo ; Jin, Dan ; Yang, Zhengyi ; Li, Jin ; Zhao, Cui ; Wang, Luning ; An, Ningyu ; Liu, Bing ; Zhang, Xi ; Liu, Yong</creatorcontrib><description>Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by progressive dementia. Diffusion tensor imaging (DTI) has been widely used to show structural integrity and delineate white matter (WM) degeneration in AD. The automated fiber quantification (AFQ) method is a fully automated approach that can rapidly and reliably identify major WM fiber tracts and evaluate WM properties. The main aim of this study was to assess WM integrity and abnormities in a cohort of patients with amnestic mild cognitive impairment (aMCI) and AD as well as normal controls (NCs). For this purpose, we first used AFQ to identify 20 major WM tracts and assessed WM integrity and abnormalities in a cohort of 120 subjects (39 NCs, 34 aMCI patients and 47 AD patients) in a discovery dataset and 122 subjects (43 NCs, 37 aMCI patients and 42 AD patients) in a replicated dataset. Pointwise differences along WM tracts were identified in the discovery dataset and simultaneously confirmed in the replicated dataset. Next, we investigated the utility of DTI measures along WM tracts as features to distinguish patients with AD from NCs via multilevel cross validation using a support vector machine. Correlation analysis revealed the identified microstructural WM alterations and classification output to be highly associated with cognitive ability in the patient groups, suggesting that they may be a robust biomarker of AD. This systematic study provides a pipeline to examine WM integrity and its potential clinical application in AD and may be useful for studying other neurological and psychiatric disorders.</description><identifier>ISSN: 0010-9452</identifier><identifier>EISSN: 1973-8102</identifier><identifier>DOI: 10.1016/j.cortex.2020.03.032</identifier><identifier>PMID: 32574842</identifier><language>eng</language><publisher>Italy: Elsevier Ltd</publisher><subject>Alzheimer's disease ; Diffusion-weighted MRI ; Support vector machine ; Tract-specific analysis ; White matter</subject><ispartof>Cortex, 2020-08, Vol.129, p.390-405</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright © 2020 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-51d563e1340a269a876873d058ca4bb513d4c1f7023b69e77809ffa096c29eab3</citedby><cites>FETCH-LOGICAL-c413t-51d563e1340a269a876873d058ca4bb513d4c1f7023b69e77809ffa096c29eab3</cites><orcidid>0000-0002-7654-9417 ; 0000-0003-2029-5187 ; 0000-0002-7819-439X ; 0000-0002-1862-3121</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cortex.2020.03.032$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32574842$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dou, Xuejiao</creatorcontrib><creatorcontrib>Yao, Hongxiang</creatorcontrib><creatorcontrib>Feng, Feng</creatorcontrib><creatorcontrib>Wang, Pan</creatorcontrib><creatorcontrib>Zhou, Bo</creatorcontrib><creatorcontrib>Jin, Dan</creatorcontrib><creatorcontrib>Yang, Zhengyi</creatorcontrib><creatorcontrib>Li, Jin</creatorcontrib><creatorcontrib>Zhao, Cui</creatorcontrib><creatorcontrib>Wang, Luning</creatorcontrib><creatorcontrib>An, Ningyu</creatorcontrib><creatorcontrib>Liu, Bing</creatorcontrib><creatorcontrib>Zhang, Xi</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><title>Characterizing white matter connectivity in Alzheimer's disease and mild cognitive impairment: An automated fiber quantification analysis with two independent datasets</title><title>Cortex</title><addtitle>Cortex</addtitle><description>Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by progressive dementia. Diffusion tensor imaging (DTI) has been widely used to show structural integrity and delineate white matter (WM) degeneration in AD. The automated fiber quantification (AFQ) method is a fully automated approach that can rapidly and reliably identify major WM fiber tracts and evaluate WM properties. The main aim of this study was to assess WM integrity and abnormities in a cohort of patients with amnestic mild cognitive impairment (aMCI) and AD as well as normal controls (NCs). For this purpose, we first used AFQ to identify 20 major WM tracts and assessed WM integrity and abnormalities in a cohort of 120 subjects (39 NCs, 34 aMCI patients and 47 AD patients) in a discovery dataset and 122 subjects (43 NCs, 37 aMCI patients and 42 AD patients) in a replicated dataset. Pointwise differences along WM tracts were identified in the discovery dataset and simultaneously confirmed in the replicated dataset. Next, we investigated the utility of DTI measures along WM tracts as features to distinguish patients with AD from NCs via multilevel cross validation using a support vector machine. Correlation analysis revealed the identified microstructural WM alterations and classification output to be highly associated with cognitive ability in the patient groups, suggesting that they may be a robust biomarker of AD. This systematic study provides a pipeline to examine WM integrity and its potential clinical application in AD and may be useful for studying other neurological and psychiatric disorders.</description><subject>Alzheimer's disease</subject><subject>Diffusion-weighted MRI</subject><subject>Support vector machine</subject><subject>Tract-specific analysis</subject><subject>White matter</subject><issn>0010-9452</issn><issn>1973-8102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kd2KFDEQhYMo7uzqG4jkTm96zF__eSEMg6vCgjd6HdJJ9U4N3clskt5x9oV8TbPM6qVQVEHlq3MIh5A3nK05482H_dqGmOHXWjDB1kyWEs_IivetrDrOxHOyYoyzqle1uCCXKe1ZAbu6fkkupKhb1SmxIr-3OxONzRDxAf0tPe4wA51NLhtqg_dgM95jPlH0dDM97ABniO8SdZjAJKDGOzrj5Ap867GwQHE-GIwz-PyRbjw1Sw5FEBwdcSiqd4vxGUe0JmMoz95Mp4SJHjHvaD6G4uTgAKX5TJ3JxSWnV-TFaKYEr5_mFfl5_fnH9mt18_3Lt-3mprKKy1zV3NWNBC4VM6LpTdc2XSsdqztr1DDUXDpl-dgyIYemh7btWD-OhvWNFT2YQV6R92fdQwx3C6SsZ0wWpsl4CEvSQvGmV7JXbUHVGbUxpBRh1IeIs4knzZl-jEjv9Tki_RiRZrKUKGdvnxyWYQb37-hvJgX4dAag_PMeIepkEbwFh7GkoV3A_zv8ARqLqMI</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Dou, Xuejiao</creator><creator>Yao, Hongxiang</creator><creator>Feng, Feng</creator><creator>Wang, Pan</creator><creator>Zhou, Bo</creator><creator>Jin, Dan</creator><creator>Yang, Zhengyi</creator><creator>Li, Jin</creator><creator>Zhao, Cui</creator><creator>Wang, Luning</creator><creator>An, Ningyu</creator><creator>Liu, Bing</creator><creator>Zhang, Xi</creator><creator>Liu, Yong</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7654-9417</orcidid><orcidid>https://orcid.org/0000-0003-2029-5187</orcidid><orcidid>https://orcid.org/0000-0002-7819-439X</orcidid><orcidid>https://orcid.org/0000-0002-1862-3121</orcidid></search><sort><creationdate>202008</creationdate><title>Characterizing white matter connectivity in Alzheimer's disease and mild cognitive impairment: An automated fiber quantification analysis with two independent datasets</title><author>Dou, Xuejiao ; Yao, Hongxiang ; Feng, Feng ; Wang, Pan ; Zhou, Bo ; Jin, Dan ; Yang, Zhengyi ; Li, Jin ; Zhao, Cui ; Wang, Luning ; An, Ningyu ; Liu, Bing ; Zhang, Xi ; Liu, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-51d563e1340a269a876873d058ca4bb513d4c1f7023b69e77809ffa096c29eab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alzheimer's disease</topic><topic>Diffusion-weighted MRI</topic><topic>Support vector machine</topic><topic>Tract-specific analysis</topic><topic>White matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dou, Xuejiao</creatorcontrib><creatorcontrib>Yao, Hongxiang</creatorcontrib><creatorcontrib>Feng, Feng</creatorcontrib><creatorcontrib>Wang, Pan</creatorcontrib><creatorcontrib>Zhou, Bo</creatorcontrib><creatorcontrib>Jin, Dan</creatorcontrib><creatorcontrib>Yang, Zhengyi</creatorcontrib><creatorcontrib>Li, Jin</creatorcontrib><creatorcontrib>Zhao, Cui</creatorcontrib><creatorcontrib>Wang, Luning</creatorcontrib><creatorcontrib>An, Ningyu</creatorcontrib><creatorcontrib>Liu, Bing</creatorcontrib><creatorcontrib>Zhang, Xi</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cortex</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dou, Xuejiao</au><au>Yao, Hongxiang</au><au>Feng, Feng</au><au>Wang, Pan</au><au>Zhou, Bo</au><au>Jin, Dan</au><au>Yang, Zhengyi</au><au>Li, Jin</au><au>Zhao, Cui</au><au>Wang, Luning</au><au>An, Ningyu</au><au>Liu, Bing</au><au>Zhang, Xi</au><au>Liu, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing white matter connectivity in Alzheimer's disease and mild cognitive impairment: An automated fiber quantification analysis with two independent datasets</atitle><jtitle>Cortex</jtitle><addtitle>Cortex</addtitle><date>2020-08</date><risdate>2020</risdate><volume>129</volume><spage>390</spage><epage>405</epage><pages>390-405</pages><issn>0010-9452</issn><eissn>1973-8102</eissn><abstract>Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by progressive dementia. Diffusion tensor imaging (DTI) has been widely used to show structural integrity and delineate white matter (WM) degeneration in AD. The automated fiber quantification (AFQ) method is a fully automated approach that can rapidly and reliably identify major WM fiber tracts and evaluate WM properties. The main aim of this study was to assess WM integrity and abnormities in a cohort of patients with amnestic mild cognitive impairment (aMCI) and AD as well as normal controls (NCs). For this purpose, we first used AFQ to identify 20 major WM tracts and assessed WM integrity and abnormalities in a cohort of 120 subjects (39 NCs, 34 aMCI patients and 47 AD patients) in a discovery dataset and 122 subjects (43 NCs, 37 aMCI patients and 42 AD patients) in a replicated dataset. Pointwise differences along WM tracts were identified in the discovery dataset and simultaneously confirmed in the replicated dataset. Next, we investigated the utility of DTI measures along WM tracts as features to distinguish patients with AD from NCs via multilevel cross validation using a support vector machine. Correlation analysis revealed the identified microstructural WM alterations and classification output to be highly associated with cognitive ability in the patient groups, suggesting that they may be a robust biomarker of AD. This systematic study provides a pipeline to examine WM integrity and its potential clinical application in AD and may be useful for studying other neurological and psychiatric disorders.</abstract><cop>Italy</cop><pub>Elsevier Ltd</pub><pmid>32574842</pmid><doi>10.1016/j.cortex.2020.03.032</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7654-9417</orcidid><orcidid>https://orcid.org/0000-0003-2029-5187</orcidid><orcidid>https://orcid.org/0000-0002-7819-439X</orcidid><orcidid>https://orcid.org/0000-0002-1862-3121</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-9452
ispartof Cortex, 2020-08, Vol.129, p.390-405
issn 0010-9452
1973-8102
language eng
recordid cdi_proquest_miscellaneous_2416943947
source Access via ScienceDirect (Elsevier)
subjects Alzheimer's disease
Diffusion-weighted MRI
Support vector machine
Tract-specific analysis
White matter
title Characterizing white matter connectivity in Alzheimer's disease and mild cognitive impairment: An automated fiber quantification analysis with two independent datasets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A44%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20white%20matter%20connectivity%20in%20Alzheimer's%20disease%20and%20mild%20cognitive%20impairment:%20An%20automated%20fiber%20quantification%20analysis%20with%20two%20independent%20datasets&rft.jtitle=Cortex&rft.au=Dou,%20Xuejiao&rft.date=2020-08&rft.volume=129&rft.spage=390&rft.epage=405&rft.pages=390-405&rft.issn=0010-9452&rft.eissn=1973-8102&rft_id=info:doi/10.1016/j.cortex.2020.03.032&rft_dat=%3Cproquest_cross%3E2416943947%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2416943947&rft_id=info:pmid/32574842&rft_els_id=S0010945220302082&rfr_iscdi=true