Maintaining the validity of inference in small‐sample stepped wedge cluster randomized trials with binary outcomes when using generalized estimating equations

Stepped wedge cluster trials are an increasingly popular alternative to traditional parallel cluster randomized trials. Such trials often utilize a small number of clusters and numerous time intervals, and these components must be considered when choosing an analysis method. A generalized linear mix...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2020-09, Vol.39 (21), p.2779-2792
Hauptverfasser: Ford, Whitney P., Westgate, Philip M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2792
container_issue 21
container_start_page 2779
container_title Statistics in medicine
container_volume 39
creator Ford, Whitney P.
Westgate, Philip M.
description Stepped wedge cluster trials are an increasingly popular alternative to traditional parallel cluster randomized trials. Such trials often utilize a small number of clusters and numerous time intervals, and these components must be considered when choosing an analysis method. A generalized linear mixed model containing a random intercept and fixed time and intervention covariates is the most common analysis approach. However, the sole use of a random intercept applies a constant intraclass correlation coefficient structure, which is an assumption that is likely to be violated given stepped wedge trials (SWTs) have multiple time intervals. Alternatively, generalized estimating equations (GEE) are robust to the misspecification of the working correlation structure, although it has been shown that small‐sample adjustments to standard error estimates and the use of appropriate degrees of freedom are required to maintain the validity of inference when the number of clusters is small. In this article, we show, using an extensive simulation study based on a motivating example and a more general design, the use of GEE can maintain the validity of inference in small‐sample SWTs with binary outcomes. Furthermore, we show which combinations of bias corrections to standard error estimates and degrees of freedom work best in terms of attaining nominal type I error rates.
doi_str_mv 10.1002/sim.8575
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2416931279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430816651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4195-ac90da2718f8054520a8cce7bb2fdc0bb94da5506db536e79e7fb0b83da49363</originalsourceid><addsrcrecordid>eNp1kUtq3TAUhkVpaG7TQlZQBJ1k4kSSLcseltCmgYQOmrnR4_heBVl2JLmX21GXkCVkbVlJ5LwKhQ6ExNGn7xzxI3RIyTElhJ1EOxw3XPA3aEVJKwrCePMWrQgToqgF5fvofYzXhFDKmXiH9kvGRcPqaoXuLqX1KS_r1zhtAP-SzhqbdnjssfU9BPAa8gnHQTp3_-c2ymFygGOCaQKDt2DWgLWbcyHgIL0ZB_s7X6RgpYt4a9MGK-tlyMo56XGAXNyAx3Nceq7BQ8g9lycQkx1kWspwM-fD6OMHtNdnD3x83g_Q1bevV6ffi4sfZ-enXy4KXdGWF1K3xEgmaNM3hFecEdloDUIp1htNlGorIzkntVG8rEG0IHpFVFMaWbVlXR6goyftFMabOQ_SDTZqcE56GOfYsYrWbUmZaDP6-R_0epyDz8NlqiQNrWtO_wp1GGMM0HdTyJ8Lu46Sbgmty6F1S2gZ_fQsnNUA5hV8SSkDxROwtQ52_xV1P88vH4UP5EKl9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430816651</pqid></control><display><type>article</type><title>Maintaining the validity of inference in small‐sample stepped wedge cluster randomized trials with binary outcomes when using generalized estimating equations</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ford, Whitney P. ; Westgate, Philip M.</creator><creatorcontrib>Ford, Whitney P. ; Westgate, Philip M.</creatorcontrib><description>Stepped wedge cluster trials are an increasingly popular alternative to traditional parallel cluster randomized trials. Such trials often utilize a small number of clusters and numerous time intervals, and these components must be considered when choosing an analysis method. A generalized linear mixed model containing a random intercept and fixed time and intervention covariates is the most common analysis approach. However, the sole use of a random intercept applies a constant intraclass correlation coefficient structure, which is an assumption that is likely to be violated given stepped wedge trials (SWTs) have multiple time intervals. Alternatively, generalized estimating equations (GEE) are robust to the misspecification of the working correlation structure, although it has been shown that small‐sample adjustments to standard error estimates and the use of appropriate degrees of freedom are required to maintain the validity of inference when the number of clusters is small. In this article, we show, using an extensive simulation study based on a motivating example and a more general design, the use of GEE can maintain the validity of inference in small‐sample SWTs with binary outcomes. Furthermore, we show which combinations of bias corrections to standard error estimates and degrees of freedom work best in terms of attaining nominal type I error rates.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.8575</identifier><identifier>PMID: 32578264</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>degrees of freedom ; empirical standard error ; generalized estimating equations ; group randomized trials ; test size ; Validity</subject><ispartof>Statistics in medicine, 2020-09, Vol.39 (21), p.2779-2792</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4195-ac90da2718f8054520a8cce7bb2fdc0bb94da5506db536e79e7fb0b83da49363</citedby><cites>FETCH-LOGICAL-c4195-ac90da2718f8054520a8cce7bb2fdc0bb94da5506db536e79e7fb0b83da49363</cites><orcidid>0000-0002-0839-4628</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.8575$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.8575$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32578264$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ford, Whitney P.</creatorcontrib><creatorcontrib>Westgate, Philip M.</creatorcontrib><title>Maintaining the validity of inference in small‐sample stepped wedge cluster randomized trials with binary outcomes when using generalized estimating equations</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>Stepped wedge cluster trials are an increasingly popular alternative to traditional parallel cluster randomized trials. Such trials often utilize a small number of clusters and numerous time intervals, and these components must be considered when choosing an analysis method. A generalized linear mixed model containing a random intercept and fixed time and intervention covariates is the most common analysis approach. However, the sole use of a random intercept applies a constant intraclass correlation coefficient structure, which is an assumption that is likely to be violated given stepped wedge trials (SWTs) have multiple time intervals. Alternatively, generalized estimating equations (GEE) are robust to the misspecification of the working correlation structure, although it has been shown that small‐sample adjustments to standard error estimates and the use of appropriate degrees of freedom are required to maintain the validity of inference when the number of clusters is small. In this article, we show, using an extensive simulation study based on a motivating example and a more general design, the use of GEE can maintain the validity of inference in small‐sample SWTs with binary outcomes. Furthermore, we show which combinations of bias corrections to standard error estimates and degrees of freedom work best in terms of attaining nominal type I error rates.</description><subject>degrees of freedom</subject><subject>empirical standard error</subject><subject>generalized estimating equations</subject><subject>group randomized trials</subject><subject>test size</subject><subject>Validity</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kUtq3TAUhkVpaG7TQlZQBJ1k4kSSLcseltCmgYQOmrnR4_heBVl2JLmX21GXkCVkbVlJ5LwKhQ6ExNGn7xzxI3RIyTElhJ1EOxw3XPA3aEVJKwrCePMWrQgToqgF5fvofYzXhFDKmXiH9kvGRcPqaoXuLqX1KS_r1zhtAP-SzhqbdnjssfU9BPAa8gnHQTp3_-c2ymFygGOCaQKDt2DWgLWbcyHgIL0ZB_s7X6RgpYt4a9MGK-tlyMo56XGAXNyAx3Nceq7BQ8g9lycQkx1kWspwM-fD6OMHtNdnD3x83g_Q1bevV6ffi4sfZ-enXy4KXdGWF1K3xEgmaNM3hFecEdloDUIp1htNlGorIzkntVG8rEG0IHpFVFMaWbVlXR6goyftFMabOQ_SDTZqcE56GOfYsYrWbUmZaDP6-R_0epyDz8NlqiQNrWtO_wp1GGMM0HdTyJ8Lu46Sbgmty6F1S2gZ_fQsnNUA5hV8SSkDxROwtQ52_xV1P88vH4UP5EKl9g</recordid><startdate>20200920</startdate><enddate>20200920</enddate><creator>Ford, Whitney P.</creator><creator>Westgate, Philip M.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0839-4628</orcidid></search><sort><creationdate>20200920</creationdate><title>Maintaining the validity of inference in small‐sample stepped wedge cluster randomized trials with binary outcomes when using generalized estimating equations</title><author>Ford, Whitney P. ; Westgate, Philip M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4195-ac90da2718f8054520a8cce7bb2fdc0bb94da5506db536e79e7fb0b83da49363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>degrees of freedom</topic><topic>empirical standard error</topic><topic>generalized estimating equations</topic><topic>group randomized trials</topic><topic>test size</topic><topic>Validity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ford, Whitney P.</creatorcontrib><creatorcontrib>Westgate, Philip M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ford, Whitney P.</au><au>Westgate, Philip M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maintaining the validity of inference in small‐sample stepped wedge cluster randomized trials with binary outcomes when using generalized estimating equations</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2020-09-20</date><risdate>2020</risdate><volume>39</volume><issue>21</issue><spage>2779</spage><epage>2792</epage><pages>2779-2792</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>Stepped wedge cluster trials are an increasingly popular alternative to traditional parallel cluster randomized trials. Such trials often utilize a small number of clusters and numerous time intervals, and these components must be considered when choosing an analysis method. A generalized linear mixed model containing a random intercept and fixed time and intervention covariates is the most common analysis approach. However, the sole use of a random intercept applies a constant intraclass correlation coefficient structure, which is an assumption that is likely to be violated given stepped wedge trials (SWTs) have multiple time intervals. Alternatively, generalized estimating equations (GEE) are robust to the misspecification of the working correlation structure, although it has been shown that small‐sample adjustments to standard error estimates and the use of appropriate degrees of freedom are required to maintain the validity of inference when the number of clusters is small. In this article, we show, using an extensive simulation study based on a motivating example and a more general design, the use of GEE can maintain the validity of inference in small‐sample SWTs with binary outcomes. Furthermore, we show which combinations of bias corrections to standard error estimates and degrees of freedom work best in terms of attaining nominal type I error rates.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32578264</pmid><doi>10.1002/sim.8575</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0839-4628</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2020-09, Vol.39 (21), p.2779-2792
issn 0277-6715
1097-0258
language eng
recordid cdi_proquest_miscellaneous_2416931279
source Wiley Online Library Journals Frontfile Complete
subjects degrees of freedom
empirical standard error
generalized estimating equations
group randomized trials
test size
Validity
title Maintaining the validity of inference in small‐sample stepped wedge cluster randomized trials with binary outcomes when using generalized estimating equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A42%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maintaining%20the%20validity%20of%20inference%20in%20small%E2%80%90sample%20stepped%20wedge%20cluster%20randomized%20trials%20with%20binary%20outcomes%20when%20using%20generalized%20estimating%20equations&rft.jtitle=Statistics%20in%20medicine&rft.au=Ford,%20Whitney%20P.&rft.date=2020-09-20&rft.volume=39&rft.issue=21&rft.spage=2779&rft.epage=2792&rft.pages=2779-2792&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.8575&rft_dat=%3Cproquest_cross%3E2430816651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430816651&rft_id=info:pmid/32578264&rfr_iscdi=true