Maintaining the validity of inference in small‐sample stepped wedge cluster randomized trials with binary outcomes when using generalized estimating equations
Stepped wedge cluster trials are an increasingly popular alternative to traditional parallel cluster randomized trials. Such trials often utilize a small number of clusters and numerous time intervals, and these components must be considered when choosing an analysis method. A generalized linear mix...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 2020-09, Vol.39 (21), p.2779-2792 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2792 |
---|---|
container_issue | 21 |
container_start_page | 2779 |
container_title | Statistics in medicine |
container_volume | 39 |
creator | Ford, Whitney P. Westgate, Philip M. |
description | Stepped wedge cluster trials are an increasingly popular alternative to traditional parallel cluster randomized trials. Such trials often utilize a small number of clusters and numerous time intervals, and these components must be considered when choosing an analysis method. A generalized linear mixed model containing a random intercept and fixed time and intervention covariates is the most common analysis approach. However, the sole use of a random intercept applies a constant intraclass correlation coefficient structure, which is an assumption that is likely to be violated given stepped wedge trials (SWTs) have multiple time intervals. Alternatively, generalized estimating equations (GEE) are robust to the misspecification of the working correlation structure, although it has been shown that small‐sample adjustments to standard error estimates and the use of appropriate degrees of freedom are required to maintain the validity of inference when the number of clusters is small. In this article, we show, using an extensive simulation study based on a motivating example and a more general design, the use of GEE can maintain the validity of inference in small‐sample SWTs with binary outcomes. Furthermore, we show which combinations of bias corrections to standard error estimates and degrees of freedom work best in terms of attaining nominal type I error rates. |
doi_str_mv | 10.1002/sim.8575 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2416931279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430816651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4195-ac90da2718f8054520a8cce7bb2fdc0bb94da5506db536e79e7fb0b83da49363</originalsourceid><addsrcrecordid>eNp1kUtq3TAUhkVpaG7TQlZQBJ1k4kSSLcseltCmgYQOmrnR4_heBVl2JLmX21GXkCVkbVlJ5LwKhQ6ExNGn7xzxI3RIyTElhJ1EOxw3XPA3aEVJKwrCePMWrQgToqgF5fvofYzXhFDKmXiH9kvGRcPqaoXuLqX1KS_r1zhtAP-SzhqbdnjssfU9BPAa8gnHQTp3_-c2ymFygGOCaQKDt2DWgLWbcyHgIL0ZB_s7X6RgpYt4a9MGK-tlyMo56XGAXNyAx3Nceq7BQ8g9lycQkx1kWspwM-fD6OMHtNdnD3x83g_Q1bevV6ffi4sfZ-enXy4KXdGWF1K3xEgmaNM3hFecEdloDUIp1htNlGorIzkntVG8rEG0IHpFVFMaWbVlXR6goyftFMabOQ_SDTZqcE56GOfYsYrWbUmZaDP6-R_0epyDz8NlqiQNrWtO_wp1GGMM0HdTyJ8Lu46Sbgmty6F1S2gZ_fQsnNUA5hV8SSkDxROwtQ52_xV1P88vH4UP5EKl9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430816651</pqid></control><display><type>article</type><title>Maintaining the validity of inference in small‐sample stepped wedge cluster randomized trials with binary outcomes when using generalized estimating equations</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ford, Whitney P. ; Westgate, Philip M.</creator><creatorcontrib>Ford, Whitney P. ; Westgate, Philip M.</creatorcontrib><description>Stepped wedge cluster trials are an increasingly popular alternative to traditional parallel cluster randomized trials. Such trials often utilize a small number of clusters and numerous time intervals, and these components must be considered when choosing an analysis method. A generalized linear mixed model containing a random intercept and fixed time and intervention covariates is the most common analysis approach. However, the sole use of a random intercept applies a constant intraclass correlation coefficient structure, which is an assumption that is likely to be violated given stepped wedge trials (SWTs) have multiple time intervals. Alternatively, generalized estimating equations (GEE) are robust to the misspecification of the working correlation structure, although it has been shown that small‐sample adjustments to standard error estimates and the use of appropriate degrees of freedom are required to maintain the validity of inference when the number of clusters is small. In this article, we show, using an extensive simulation study based on a motivating example and a more general design, the use of GEE can maintain the validity of inference in small‐sample SWTs with binary outcomes. Furthermore, we show which combinations of bias corrections to standard error estimates and degrees of freedom work best in terms of attaining nominal type I error rates.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.8575</identifier><identifier>PMID: 32578264</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>degrees of freedom ; empirical standard error ; generalized estimating equations ; group randomized trials ; test size ; Validity</subject><ispartof>Statistics in medicine, 2020-09, Vol.39 (21), p.2779-2792</ispartof><rights>2020 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4195-ac90da2718f8054520a8cce7bb2fdc0bb94da5506db536e79e7fb0b83da49363</citedby><cites>FETCH-LOGICAL-c4195-ac90da2718f8054520a8cce7bb2fdc0bb94da5506db536e79e7fb0b83da49363</cites><orcidid>0000-0002-0839-4628</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.8575$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.8575$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32578264$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ford, Whitney P.</creatorcontrib><creatorcontrib>Westgate, Philip M.</creatorcontrib><title>Maintaining the validity of inference in small‐sample stepped wedge cluster randomized trials with binary outcomes when using generalized estimating equations</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>Stepped wedge cluster trials are an increasingly popular alternative to traditional parallel cluster randomized trials. Such trials often utilize a small number of clusters and numerous time intervals, and these components must be considered when choosing an analysis method. A generalized linear mixed model containing a random intercept and fixed time and intervention covariates is the most common analysis approach. However, the sole use of a random intercept applies a constant intraclass correlation coefficient structure, which is an assumption that is likely to be violated given stepped wedge trials (SWTs) have multiple time intervals. Alternatively, generalized estimating equations (GEE) are robust to the misspecification of the working correlation structure, although it has been shown that small‐sample adjustments to standard error estimates and the use of appropriate degrees of freedom are required to maintain the validity of inference when the number of clusters is small. In this article, we show, using an extensive simulation study based on a motivating example and a more general design, the use of GEE can maintain the validity of inference in small‐sample SWTs with binary outcomes. Furthermore, we show which combinations of bias corrections to standard error estimates and degrees of freedom work best in terms of attaining nominal type I error rates.</description><subject>degrees of freedom</subject><subject>empirical standard error</subject><subject>generalized estimating equations</subject><subject>group randomized trials</subject><subject>test size</subject><subject>Validity</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kUtq3TAUhkVpaG7TQlZQBJ1k4kSSLcseltCmgYQOmrnR4_heBVl2JLmX21GXkCVkbVlJ5LwKhQ6ExNGn7xzxI3RIyTElhJ1EOxw3XPA3aEVJKwrCePMWrQgToqgF5fvofYzXhFDKmXiH9kvGRcPqaoXuLqX1KS_r1zhtAP-SzhqbdnjssfU9BPAa8gnHQTp3_-c2ymFygGOCaQKDt2DWgLWbcyHgIL0ZB_s7X6RgpYt4a9MGK-tlyMo56XGAXNyAx3Nceq7BQ8g9lycQkx1kWspwM-fD6OMHtNdnD3x83g_Q1bevV6ffi4sfZ-enXy4KXdGWF1K3xEgmaNM3hFecEdloDUIp1htNlGorIzkntVG8rEG0IHpFVFMaWbVlXR6goyftFMabOQ_SDTZqcE56GOfYsYrWbUmZaDP6-R_0epyDz8NlqiQNrWtO_wp1GGMM0HdTyJ8Lu46Sbgmty6F1S2gZ_fQsnNUA5hV8SSkDxROwtQ52_xV1P88vH4UP5EKl9g</recordid><startdate>20200920</startdate><enddate>20200920</enddate><creator>Ford, Whitney P.</creator><creator>Westgate, Philip M.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0839-4628</orcidid></search><sort><creationdate>20200920</creationdate><title>Maintaining the validity of inference in small‐sample stepped wedge cluster randomized trials with binary outcomes when using generalized estimating equations</title><author>Ford, Whitney P. ; Westgate, Philip M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4195-ac90da2718f8054520a8cce7bb2fdc0bb94da5506db536e79e7fb0b83da49363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>degrees of freedom</topic><topic>empirical standard error</topic><topic>generalized estimating equations</topic><topic>group randomized trials</topic><topic>test size</topic><topic>Validity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ford, Whitney P.</creatorcontrib><creatorcontrib>Westgate, Philip M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ford, Whitney P.</au><au>Westgate, Philip M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maintaining the validity of inference in small‐sample stepped wedge cluster randomized trials with binary outcomes when using generalized estimating equations</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2020-09-20</date><risdate>2020</risdate><volume>39</volume><issue>21</issue><spage>2779</spage><epage>2792</epage><pages>2779-2792</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>Stepped wedge cluster trials are an increasingly popular alternative to traditional parallel cluster randomized trials. Such trials often utilize a small number of clusters and numerous time intervals, and these components must be considered when choosing an analysis method. A generalized linear mixed model containing a random intercept and fixed time and intervention covariates is the most common analysis approach. However, the sole use of a random intercept applies a constant intraclass correlation coefficient structure, which is an assumption that is likely to be violated given stepped wedge trials (SWTs) have multiple time intervals. Alternatively, generalized estimating equations (GEE) are robust to the misspecification of the working correlation structure, although it has been shown that small‐sample adjustments to standard error estimates and the use of appropriate degrees of freedom are required to maintain the validity of inference when the number of clusters is small. In this article, we show, using an extensive simulation study based on a motivating example and a more general design, the use of GEE can maintain the validity of inference in small‐sample SWTs with binary outcomes. Furthermore, we show which combinations of bias corrections to standard error estimates and degrees of freedom work best in terms of attaining nominal type I error rates.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32578264</pmid><doi>10.1002/sim.8575</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0839-4628</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2020-09, Vol.39 (21), p.2779-2792 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_proquest_miscellaneous_2416931279 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | degrees of freedom empirical standard error generalized estimating equations group randomized trials test size Validity |
title | Maintaining the validity of inference in small‐sample stepped wedge cluster randomized trials with binary outcomes when using generalized estimating equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A42%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maintaining%20the%20validity%20of%20inference%20in%20small%E2%80%90sample%20stepped%20wedge%20cluster%20randomized%20trials%20with%20binary%20outcomes%20when%20using%20generalized%20estimating%20equations&rft.jtitle=Statistics%20in%20medicine&rft.au=Ford,%20Whitney%20P.&rft.date=2020-09-20&rft.volume=39&rft.issue=21&rft.spage=2779&rft.epage=2792&rft.pages=2779-2792&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.8575&rft_dat=%3Cproquest_cross%3E2430816651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430816651&rft_id=info:pmid/32578264&rfr_iscdi=true |