Mechanochemical Activation of Class‑B G‑Protein-Coupled Receptor upon Peptide–Ligand Binding

Glucagon binding to the class-B G-protein-coupled glucagon receptor (GCGR) triggers the release of glucose from the liver during fasting. Recently, GCGR crystal structures have highlighted the conformation and molecular details of inactive and active receptor states. However, the dynamics of the con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2020-07, Vol.20 (7), p.5575-5582
Hauptverfasser: Lo Giudice, Cristina, Zhang, Haonan, Wu, Beili, Alsteens, David
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glucagon binding to the class-B G-protein-coupled glucagon receptor (GCGR) triggers the release of glucose from the liver during fasting. Recently, GCGR crystal structures have highlighted the conformation and molecular details of inactive and active receptor states. However, the dynamics of the conformational changes accompanying GCGR activation remains unclear. Here, we use multiplex force–distance curve-based atomic force microscopy (FD-based AFM) to probe in situ glucagon binding to individual GCGRs and monitor dynamically the transition to the active conformer. After a “dock” step, in which glucagon is partially bound to the GCGR extracellular domain, further interactions of the N-terminus with the transmembrane domain trigger an increase in the stiffness of the complex, adopting a highly stable and rigid “lock” conformer. This mechanotransduction is key for G-protein recruitment.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.0c02333