Fast spark discharge-laser-induced breakdown spectroscopy method for rice botanic origin determination
•Botanical origin of rice predicted by SD-LIBS and machine learning.•First time CCD was used to fit SVM classifier from rice LIBS profiling.•C, Ca, Fe, Mg, N and Na contributed for sample classification.•The best SVM model showed 96.4% of correct predictions in test set. A simple, fast, and efficien...
Gespeichert in:
Veröffentlicht in: | Food chemistry 2020-11, Vol.331, p.127051-127051, Article 127051 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 127051 |
---|---|
container_issue | |
container_start_page | 127051 |
container_title | Food chemistry |
container_volume | 331 |
creator | Pérez-Rodríguez, Michael Dirchwolf, Pamela Maia Silva, Tiago Varão Vieira, Alan Lima Neto, José Anchieta Gomes Pellerano, Roberto Gerardo Ferreira, Edilene Cristina |
description | •Botanical origin of rice predicted by SD-LIBS and machine learning.•First time CCD was used to fit SVM classifier from rice LIBS profiling.•C, Ca, Fe, Mg, N and Na contributed for sample classification.•The best SVM model showed 96.4% of correct predictions in test set.
A simple, fast, and efficient spark discharge-laser-induced breakdown spectroscopy (SD-LIBS) method was developed for determining rice botanic origin using predictive modeling based on support vector machine (SVM). Seventy-two samples from four rice varieties (Guri, Irga 424, Puitá, and Taim) were analyzed by SD-LIBS. Spectral lines of C, Ca, Fe, Mg, N and Na were selected as input variables for prediction model fitting. The SVM algorithm parameters were optimized using a central composite design (CCD) to find the better classification performance. The optimum model for discriminating rice samples according to their botanical variety was obtained using C = 5.25 and γ = 0.119. This model achieved 96.4% of correct predictions in test samples and showed sensitivities and specificities per class within the range of 92–100%. The developed method is robust and eco-friendly for rice botanic identification since its prediction results are consistent and reproducible and its application does not generate chemical waste. |
doi_str_mv | 10.1016/j.foodchem.2020.127051 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2416274871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0308814620309134</els_id><sourcerecordid>2416274871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-229f31eb6c855d6cf626bbb02b149d8b425c3f4d79c783d7d94bb490337f067f3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKt_QbJ0MzWvSWZ2ivgCwY2uQx43Nm1nUpOp4r83Ul27unD5zoHzIXROyYISKi9Xi5CSd0sYFoyw-mSKtPQAzWineKOIYodoRjjpmo4KeYxOSlkRUknazVC4M2XCZWvyGvtY3NLkN2g2pkBu4uh3Djy2Gczap8-xcuCmnIpL2y88wLRMHoeUcY4OsE2TGaPDKce3OGIPE-QhjmaKaTxFR8FsCpz93jl6vbt9uXlonp7vH2-unxrHRTs1jPWBU7DSdW3rpQuSSWstYZaK3ndWsNbxILzqneq4V74X1oqecK4CkSrwObrY925zet9BmfRQR8FmY0ZIu6KZoJIp0SlaUblHXR1UMgS9zXEw-UtTon_E6pX-E6t_xOq92Bq82gehDvmIkHVxEcZqKuaqR_sU_6v4BvY2hro</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416274871</pqid></control><display><type>article</type><title>Fast spark discharge-laser-induced breakdown spectroscopy method for rice botanic origin determination</title><source>Elsevier ScienceDirect Journals</source><creator>Pérez-Rodríguez, Michael ; Dirchwolf, Pamela Maia ; Silva, Tiago Varão ; Vieira, Alan Lima ; Neto, José Anchieta Gomes ; Pellerano, Roberto Gerardo ; Ferreira, Edilene Cristina</creator><creatorcontrib>Pérez-Rodríguez, Michael ; Dirchwolf, Pamela Maia ; Silva, Tiago Varão ; Vieira, Alan Lima ; Neto, José Anchieta Gomes ; Pellerano, Roberto Gerardo ; Ferreira, Edilene Cristina</creatorcontrib><description>•Botanical origin of rice predicted by SD-LIBS and machine learning.•First time CCD was used to fit SVM classifier from rice LIBS profiling.•C, Ca, Fe, Mg, N and Na contributed for sample classification.•The best SVM model showed 96.4% of correct predictions in test set.
A simple, fast, and efficient spark discharge-laser-induced breakdown spectroscopy (SD-LIBS) method was developed for determining rice botanic origin using predictive modeling based on support vector machine (SVM). Seventy-two samples from four rice varieties (Guri, Irga 424, Puitá, and Taim) were analyzed by SD-LIBS. Spectral lines of C, Ca, Fe, Mg, N and Na were selected as input variables for prediction model fitting. The SVM algorithm parameters were optimized using a central composite design (CCD) to find the better classification performance. The optimum model for discriminating rice samples according to their botanical variety was obtained using C = 5.25 and γ = 0.119. This model achieved 96.4% of correct predictions in test samples and showed sensitivities and specificities per class within the range of 92–100%. The developed method is robust and eco-friendly for rice botanic identification since its prediction results are consistent and reproducible and its application does not generate chemical waste.</description><identifier>ISSN: 0308-8146</identifier><identifier>EISSN: 1873-7072</identifier><identifier>DOI: 10.1016/j.foodchem.2020.127051</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Botanical origin ; Rice ; SD-LIBS ; Support vector machine</subject><ispartof>Food chemistry, 2020-11, Vol.331, p.127051-127051, Article 127051</ispartof><rights>2020 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-229f31eb6c855d6cf626bbb02b149d8b425c3f4d79c783d7d94bb490337f067f3</citedby><cites>FETCH-LOGICAL-c345t-229f31eb6c855d6cf626bbb02b149d8b425c3f4d79c783d7d94bb490337f067f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0308814620309134$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Pérez-Rodríguez, Michael</creatorcontrib><creatorcontrib>Dirchwolf, Pamela Maia</creatorcontrib><creatorcontrib>Silva, Tiago Varão</creatorcontrib><creatorcontrib>Vieira, Alan Lima</creatorcontrib><creatorcontrib>Neto, José Anchieta Gomes</creatorcontrib><creatorcontrib>Pellerano, Roberto Gerardo</creatorcontrib><creatorcontrib>Ferreira, Edilene Cristina</creatorcontrib><title>Fast spark discharge-laser-induced breakdown spectroscopy method for rice botanic origin determination</title><title>Food chemistry</title><description>•Botanical origin of rice predicted by SD-LIBS and machine learning.•First time CCD was used to fit SVM classifier from rice LIBS profiling.•C, Ca, Fe, Mg, N and Na contributed for sample classification.•The best SVM model showed 96.4% of correct predictions in test set.
A simple, fast, and efficient spark discharge-laser-induced breakdown spectroscopy (SD-LIBS) method was developed for determining rice botanic origin using predictive modeling based on support vector machine (SVM). Seventy-two samples from four rice varieties (Guri, Irga 424, Puitá, and Taim) were analyzed by SD-LIBS. Spectral lines of C, Ca, Fe, Mg, N and Na were selected as input variables for prediction model fitting. The SVM algorithm parameters were optimized using a central composite design (CCD) to find the better classification performance. The optimum model for discriminating rice samples according to their botanical variety was obtained using C = 5.25 and γ = 0.119. This model achieved 96.4% of correct predictions in test samples and showed sensitivities and specificities per class within the range of 92–100%. The developed method is robust and eco-friendly for rice botanic identification since its prediction results are consistent and reproducible and its application does not generate chemical waste.</description><subject>Botanical origin</subject><subject>Rice</subject><subject>SD-LIBS</subject><subject>Support vector machine</subject><issn>0308-8146</issn><issn>1873-7072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKt_QbJ0MzWvSWZ2ivgCwY2uQx43Nm1nUpOp4r83Ul27unD5zoHzIXROyYISKi9Xi5CSd0sYFoyw-mSKtPQAzWineKOIYodoRjjpmo4KeYxOSlkRUknazVC4M2XCZWvyGvtY3NLkN2g2pkBu4uh3Djy2Gczap8-xcuCmnIpL2y88wLRMHoeUcY4OsE2TGaPDKce3OGIPE-QhjmaKaTxFR8FsCpz93jl6vbt9uXlonp7vH2-unxrHRTs1jPWBU7DSdW3rpQuSSWstYZaK3ndWsNbxILzqneq4V74X1oqecK4CkSrwObrY925zet9BmfRQR8FmY0ZIu6KZoJIp0SlaUblHXR1UMgS9zXEw-UtTon_E6pX-E6t_xOq92Bq82gehDvmIkHVxEcZqKuaqR_sU_6v4BvY2hro</recordid><startdate>20201130</startdate><enddate>20201130</enddate><creator>Pérez-Rodríguez, Michael</creator><creator>Dirchwolf, Pamela Maia</creator><creator>Silva, Tiago Varão</creator><creator>Vieira, Alan Lima</creator><creator>Neto, José Anchieta Gomes</creator><creator>Pellerano, Roberto Gerardo</creator><creator>Ferreira, Edilene Cristina</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20201130</creationdate><title>Fast spark discharge-laser-induced breakdown spectroscopy method for rice botanic origin determination</title><author>Pérez-Rodríguez, Michael ; Dirchwolf, Pamela Maia ; Silva, Tiago Varão ; Vieira, Alan Lima ; Neto, José Anchieta Gomes ; Pellerano, Roberto Gerardo ; Ferreira, Edilene Cristina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-229f31eb6c855d6cf626bbb02b149d8b425c3f4d79c783d7d94bb490337f067f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Botanical origin</topic><topic>Rice</topic><topic>SD-LIBS</topic><topic>Support vector machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez-Rodríguez, Michael</creatorcontrib><creatorcontrib>Dirchwolf, Pamela Maia</creatorcontrib><creatorcontrib>Silva, Tiago Varão</creatorcontrib><creatorcontrib>Vieira, Alan Lima</creatorcontrib><creatorcontrib>Neto, José Anchieta Gomes</creatorcontrib><creatorcontrib>Pellerano, Roberto Gerardo</creatorcontrib><creatorcontrib>Ferreira, Edilene Cristina</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez-Rodríguez, Michael</au><au>Dirchwolf, Pamela Maia</au><au>Silva, Tiago Varão</au><au>Vieira, Alan Lima</au><au>Neto, José Anchieta Gomes</au><au>Pellerano, Roberto Gerardo</au><au>Ferreira, Edilene Cristina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast spark discharge-laser-induced breakdown spectroscopy method for rice botanic origin determination</atitle><jtitle>Food chemistry</jtitle><date>2020-11-30</date><risdate>2020</risdate><volume>331</volume><spage>127051</spage><epage>127051</epage><pages>127051-127051</pages><artnum>127051</artnum><issn>0308-8146</issn><eissn>1873-7072</eissn><abstract>•Botanical origin of rice predicted by SD-LIBS and machine learning.•First time CCD was used to fit SVM classifier from rice LIBS profiling.•C, Ca, Fe, Mg, N and Na contributed for sample classification.•The best SVM model showed 96.4% of correct predictions in test set.
A simple, fast, and efficient spark discharge-laser-induced breakdown spectroscopy (SD-LIBS) method was developed for determining rice botanic origin using predictive modeling based on support vector machine (SVM). Seventy-two samples from four rice varieties (Guri, Irga 424, Puitá, and Taim) were analyzed by SD-LIBS. Spectral lines of C, Ca, Fe, Mg, N and Na were selected as input variables for prediction model fitting. The SVM algorithm parameters were optimized using a central composite design (CCD) to find the better classification performance. The optimum model for discriminating rice samples according to their botanical variety was obtained using C = 5.25 and γ = 0.119. This model achieved 96.4% of correct predictions in test samples and showed sensitivities and specificities per class within the range of 92–100%. The developed method is robust and eco-friendly for rice botanic identification since its prediction results are consistent and reproducible and its application does not generate chemical waste.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.foodchem.2020.127051</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0308-8146 |
ispartof | Food chemistry, 2020-11, Vol.331, p.127051-127051, Article 127051 |
issn | 0308-8146 1873-7072 |
language | eng |
recordid | cdi_proquest_miscellaneous_2416274871 |
source | Elsevier ScienceDirect Journals |
subjects | Botanical origin Rice SD-LIBS Support vector machine |
title | Fast spark discharge-laser-induced breakdown spectroscopy method for rice botanic origin determination |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A29%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20spark%20discharge-laser-induced%20breakdown%20spectroscopy%20method%20for%20rice%20botanic%20origin%20determination&rft.jtitle=Food%20chemistry&rft.au=P%C3%A9rez-Rodr%C3%ADguez,%20Michael&rft.date=2020-11-30&rft.volume=331&rft.spage=127051&rft.epage=127051&rft.pages=127051-127051&rft.artnum=127051&rft.issn=0308-8146&rft.eissn=1873-7072&rft_id=info:doi/10.1016/j.foodchem.2020.127051&rft_dat=%3Cproquest_cross%3E2416274871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2416274871&rft_id=info:pmid/&rft_els_id=S0308814620309134&rfr_iscdi=true |