Determining Optimal Mean Arterial Pressure After Cardiac Arrest: A Systematic Review
The use of cerebral autoregulation monitoring to identify patient-specific optimal mean arterial pressure (MAP OPT ) has emerged as a technique to augment cerebral oxygen delivery in post-cardiac arrest patients. Our systematic review aims to determine (a) the average MAP OPT in these patients, (b)...
Gespeichert in:
Veröffentlicht in: | Neurocritical care 2021-04, Vol.34 (2), p.621-634 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 634 |
---|---|
container_issue | 2 |
container_start_page | 621 |
container_title | Neurocritical care |
container_volume | 34 |
creator | Rikhraj, Kiran J. K. Wood, Michael D. Hoiland, Ryan L. Thiara, Sharanjit Griesdale, Donald E. G. Sekhon, Mypinder S. |
description | The use of cerebral autoregulation monitoring to identify patient-specific optimal mean arterial pressure (MAP
OPT
) has emerged as a technique to augment cerebral oxygen delivery in post-cardiac arrest patients. Our systematic review aims to determine (a) the average MAP
OPT
in these patients, (b) the feasibility of identifying MAP
OPT
, (c) the brain tissue oxygenation levels when MAP is within proximity to the MAP
OPT
and (d) the relationship between neurological outcome and MAP
OPT
-targeted resuscitation strategies. We carried out this review in accordance with the PRISMA guidelines. We included all studies that used cerebral autoregulation to determine MAP
OPT
in adult patients (> 16 years old) who achieved return of spontaneous circulation (ROSC) following cardiac arrest. All studies had to include our primary outcome of MAP
OPT
. We excluded studies where the patients had any history of traumatic brain injury, ischemic stroke or intracranial hemorrhage. We identified six studies with 181 patients. There was wide variability in cerebral autoregulation monitoring methods, length of monitoring, calculation and reporting of MAP
OPT
. Amongst all studies, the median or mean MAP
OPT
was consistently above 65 mmHg (range 70–114 mmHg). Definitions of feasibility varied among studies and were difficult to summarize. Only one study noted that brain tissue oxygenation increased as patients’ MAP approached MAP
OPT
. There was no consistent association between targeting MAP
OPT
and improved neurological outcome. There is considerable heterogeneity in MAP
OPT
due to differences in monitoring methods of autoregulation. Further research is needed to assess the clinical utility of MAP
OPT
-guided strategies on decreasing secondary injury and improving neurological outcomes after ROSC. |
doi_str_mv | 10.1007/s12028-020-01027-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2416273781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919332607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-c8c4411bc5f04ccacd28ac755bc582363b885a3b957ffc01b830520f571f84393</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwAyxQJDZsAn7EscMuKk-pqAjK2nJcp0qVR7ETqv49U1JAYsHK9syZ8dVB6JTgS4KxuPKEYipDTHGICaYiXO-hIeE8DnESk_3tPSJhnDA2QEfeLzEwieCHaMAoF1RSNkSzG9taVxV1US-C6aotKl0GT1bXQeqgUcDr2VnvO2eDNIdKMNZuXmgDfai310EavG58ayvdFiZ4sR-FXR-jg1yX3p7szhF6u7udjR_CyfT-cZxOQsMEb0MjTRQRkhme48gYbeZUaiM4hwqEi1kmJdcsS7jIc4NJJhnmFOdckFxGLGEjdNHvXbnmvYM0qiq8sWWpa9t0XtGIxFQwIQmg53_QZdO5GtIpmhBQRGMsgKI9ZVzjvbO5Wjkw4jaKYLV1rnrnCpyrL-dqDUNnu9VdVtn5z8i3ZABYD3ho1Qvrfv_-Z-0n9HCLWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919332607</pqid></control><display><type>article</type><title>Determining Optimal Mean Arterial Pressure After Cardiac Arrest: A Systematic Review</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Rikhraj, Kiran J. K. ; Wood, Michael D. ; Hoiland, Ryan L. ; Thiara, Sharanjit ; Griesdale, Donald E. G. ; Sekhon, Mypinder S.</creator><creatorcontrib>Rikhraj, Kiran J. K. ; Wood, Michael D. ; Hoiland, Ryan L. ; Thiara, Sharanjit ; Griesdale, Donald E. G. ; Sekhon, Mypinder S.</creatorcontrib><description>The use of cerebral autoregulation monitoring to identify patient-specific optimal mean arterial pressure (MAP
OPT
) has emerged as a technique to augment cerebral oxygen delivery in post-cardiac arrest patients. Our systematic review aims to determine (a) the average MAP
OPT
in these patients, (b) the feasibility of identifying MAP
OPT
, (c) the brain tissue oxygenation levels when MAP is within proximity to the MAP
OPT
and (d) the relationship between neurological outcome and MAP
OPT
-targeted resuscitation strategies. We carried out this review in accordance with the PRISMA guidelines. We included all studies that used cerebral autoregulation to determine MAP
OPT
in adult patients (> 16 years old) who achieved return of spontaneous circulation (ROSC) following cardiac arrest. All studies had to include our primary outcome of MAP
OPT
. We excluded studies where the patients had any history of traumatic brain injury, ischemic stroke or intracranial hemorrhage. We identified six studies with 181 patients. There was wide variability in cerebral autoregulation monitoring methods, length of monitoring, calculation and reporting of MAP
OPT
. Amongst all studies, the median or mean MAP
OPT
was consistently above 65 mmHg (range 70–114 mmHg). Definitions of feasibility varied among studies and were difficult to summarize. Only one study noted that brain tissue oxygenation increased as patients’ MAP approached MAP
OPT
. There was no consistent association between targeting MAP
OPT
and improved neurological outcome. There is considerable heterogeneity in MAP
OPT
due to differences in monitoring methods of autoregulation. Further research is needed to assess the clinical utility of MAP
OPT
-guided strategies on decreasing secondary injury and improving neurological outcomes after ROSC.</description><identifier>ISSN: 1541-6933</identifier><identifier>EISSN: 1556-0961</identifier><identifier>DOI: 10.1007/s12028-020-01027-w</identifier><identifier>PMID: 32572823</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cardiac arrest ; Clinical trials ; Critical Care Medicine ; Flow velocity ; Hypoxia ; Intensive ; Internal Medicine ; Ischemia ; Medicine ; Medicine & Public Health ; Mortality ; Neurology ; Neurosurgery ; Observational studies ; Patients ; Review Article ; Sensors ; Spectrum analysis ; Systematic review ; Traumatic brain injury</subject><ispartof>Neurocritical care, 2021-04, Vol.34 (2), p.621-634</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature and Neurocritical Care Society 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature and Neurocritical Care Society 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-c8c4411bc5f04ccacd28ac755bc582363b885a3b957ffc01b830520f571f84393</citedby><cites>FETCH-LOGICAL-c375t-c8c4411bc5f04ccacd28ac755bc582363b885a3b957ffc01b830520f571f84393</cites><orcidid>0000-0003-3135-5843</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12028-020-01027-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919332607?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,33722,41464,42533,43781,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32572823$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rikhraj, Kiran J. K.</creatorcontrib><creatorcontrib>Wood, Michael D.</creatorcontrib><creatorcontrib>Hoiland, Ryan L.</creatorcontrib><creatorcontrib>Thiara, Sharanjit</creatorcontrib><creatorcontrib>Griesdale, Donald E. G.</creatorcontrib><creatorcontrib>Sekhon, Mypinder S.</creatorcontrib><title>Determining Optimal Mean Arterial Pressure After Cardiac Arrest: A Systematic Review</title><title>Neurocritical care</title><addtitle>Neurocrit Care</addtitle><addtitle>Neurocrit Care</addtitle><description>The use of cerebral autoregulation monitoring to identify patient-specific optimal mean arterial pressure (MAP
OPT
) has emerged as a technique to augment cerebral oxygen delivery in post-cardiac arrest patients. Our systematic review aims to determine (a) the average MAP
OPT
in these patients, (b) the feasibility of identifying MAP
OPT
, (c) the brain tissue oxygenation levels when MAP is within proximity to the MAP
OPT
and (d) the relationship between neurological outcome and MAP
OPT
-targeted resuscitation strategies. We carried out this review in accordance with the PRISMA guidelines. We included all studies that used cerebral autoregulation to determine MAP
OPT
in adult patients (> 16 years old) who achieved return of spontaneous circulation (ROSC) following cardiac arrest. All studies had to include our primary outcome of MAP
OPT
. We excluded studies where the patients had any history of traumatic brain injury, ischemic stroke or intracranial hemorrhage. We identified six studies with 181 patients. There was wide variability in cerebral autoregulation monitoring methods, length of monitoring, calculation and reporting of MAP
OPT
. Amongst all studies, the median or mean MAP
OPT
was consistently above 65 mmHg (range 70–114 mmHg). Definitions of feasibility varied among studies and were difficult to summarize. Only one study noted that brain tissue oxygenation increased as patients’ MAP approached MAP
OPT
. There was no consistent association between targeting MAP
OPT
and improved neurological outcome. There is considerable heterogeneity in MAP
OPT
due to differences in monitoring methods of autoregulation. Further research is needed to assess the clinical utility of MAP
OPT
-guided strategies on decreasing secondary injury and improving neurological outcomes after ROSC.</description><subject>Cardiac arrest</subject><subject>Clinical trials</subject><subject>Critical Care Medicine</subject><subject>Flow velocity</subject><subject>Hypoxia</subject><subject>Intensive</subject><subject>Internal Medicine</subject><subject>Ischemia</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Mortality</subject><subject>Neurology</subject><subject>Neurosurgery</subject><subject>Observational studies</subject><subject>Patients</subject><subject>Review Article</subject><subject>Sensors</subject><subject>Spectrum analysis</subject><subject>Systematic review</subject><subject>Traumatic brain injury</subject><issn>1541-6933</issn><issn>1556-0961</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwAyxQJDZsAn7EscMuKk-pqAjK2nJcp0qVR7ETqv49U1JAYsHK9syZ8dVB6JTgS4KxuPKEYipDTHGICaYiXO-hIeE8DnESk_3tPSJhnDA2QEfeLzEwieCHaMAoF1RSNkSzG9taVxV1US-C6aotKl0GT1bXQeqgUcDr2VnvO2eDNIdKMNZuXmgDfai310EavG58ayvdFiZ4sR-FXR-jg1yX3p7szhF6u7udjR_CyfT-cZxOQsMEb0MjTRQRkhme48gYbeZUaiM4hwqEi1kmJdcsS7jIc4NJJhnmFOdckFxGLGEjdNHvXbnmvYM0qiq8sWWpa9t0XtGIxFQwIQmg53_QZdO5GtIpmhBQRGMsgKI9ZVzjvbO5Wjkw4jaKYLV1rnrnCpyrL-dqDUNnu9VdVtn5z8i3ZABYD3ho1Qvrfv_-Z-0n9HCLWQ</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Rikhraj, Kiran J. K.</creator><creator>Wood, Michael D.</creator><creator>Hoiland, Ryan L.</creator><creator>Thiara, Sharanjit</creator><creator>Griesdale, Donald E. G.</creator><creator>Sekhon, Mypinder S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>NAPCQ</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3135-5843</orcidid></search><sort><creationdate>20210401</creationdate><title>Determining Optimal Mean Arterial Pressure After Cardiac Arrest: A Systematic Review</title><author>Rikhraj, Kiran J. K. ; Wood, Michael D. ; Hoiland, Ryan L. ; Thiara, Sharanjit ; Griesdale, Donald E. G. ; Sekhon, Mypinder S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-c8c4411bc5f04ccacd28ac755bc582363b885a3b957ffc01b830520f571f84393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cardiac arrest</topic><topic>Clinical trials</topic><topic>Critical Care Medicine</topic><topic>Flow velocity</topic><topic>Hypoxia</topic><topic>Intensive</topic><topic>Internal Medicine</topic><topic>Ischemia</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Mortality</topic><topic>Neurology</topic><topic>Neurosurgery</topic><topic>Observational studies</topic><topic>Patients</topic><topic>Review Article</topic><topic>Sensors</topic><topic>Spectrum analysis</topic><topic>Systematic review</topic><topic>Traumatic brain injury</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rikhraj, Kiran J. K.</creatorcontrib><creatorcontrib>Wood, Michael D.</creatorcontrib><creatorcontrib>Hoiland, Ryan L.</creatorcontrib><creatorcontrib>Thiara, Sharanjit</creatorcontrib><creatorcontrib>Griesdale, Donald E. G.</creatorcontrib><creatorcontrib>Sekhon, Mypinder S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Neurocritical care</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rikhraj, Kiran J. K.</au><au>Wood, Michael D.</au><au>Hoiland, Ryan L.</au><au>Thiara, Sharanjit</au><au>Griesdale, Donald E. G.</au><au>Sekhon, Mypinder S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determining Optimal Mean Arterial Pressure After Cardiac Arrest: A Systematic Review</atitle><jtitle>Neurocritical care</jtitle><stitle>Neurocrit Care</stitle><addtitle>Neurocrit Care</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>34</volume><issue>2</issue><spage>621</spage><epage>634</epage><pages>621-634</pages><issn>1541-6933</issn><eissn>1556-0961</eissn><abstract>The use of cerebral autoregulation monitoring to identify patient-specific optimal mean arterial pressure (MAP
OPT
) has emerged as a technique to augment cerebral oxygen delivery in post-cardiac arrest patients. Our systematic review aims to determine (a) the average MAP
OPT
in these patients, (b) the feasibility of identifying MAP
OPT
, (c) the brain tissue oxygenation levels when MAP is within proximity to the MAP
OPT
and (d) the relationship between neurological outcome and MAP
OPT
-targeted resuscitation strategies. We carried out this review in accordance with the PRISMA guidelines. We included all studies that used cerebral autoregulation to determine MAP
OPT
in adult patients (> 16 years old) who achieved return of spontaneous circulation (ROSC) following cardiac arrest. All studies had to include our primary outcome of MAP
OPT
. We excluded studies where the patients had any history of traumatic brain injury, ischemic stroke or intracranial hemorrhage. We identified six studies with 181 patients. There was wide variability in cerebral autoregulation monitoring methods, length of monitoring, calculation and reporting of MAP
OPT
. Amongst all studies, the median or mean MAP
OPT
was consistently above 65 mmHg (range 70–114 mmHg). Definitions of feasibility varied among studies and were difficult to summarize. Only one study noted that brain tissue oxygenation increased as patients’ MAP approached MAP
OPT
. There was no consistent association between targeting MAP
OPT
and improved neurological outcome. There is considerable heterogeneity in MAP
OPT
due to differences in monitoring methods of autoregulation. Further research is needed to assess the clinical utility of MAP
OPT
-guided strategies on decreasing secondary injury and improving neurological outcomes after ROSC.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>32572823</pmid><doi>10.1007/s12028-020-01027-w</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3135-5843</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1541-6933 |
ispartof | Neurocritical care, 2021-04, Vol.34 (2), p.621-634 |
issn | 1541-6933 1556-0961 |
language | eng |
recordid | cdi_proquest_miscellaneous_2416273781 |
source | Springer Nature - Complete Springer Journals; ProQuest Central |
subjects | Cardiac arrest Clinical trials Critical Care Medicine Flow velocity Hypoxia Intensive Internal Medicine Ischemia Medicine Medicine & Public Health Mortality Neurology Neurosurgery Observational studies Patients Review Article Sensors Spectrum analysis Systematic review Traumatic brain injury |
title | Determining Optimal Mean Arterial Pressure After Cardiac Arrest: A Systematic Review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A39%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determining%20Optimal%20Mean%20Arterial%20Pressure%20After%20Cardiac%20Arrest:%20A%20Systematic%20Review&rft.jtitle=Neurocritical%20care&rft.au=Rikhraj,%20Kiran%20J.%20K.&rft.date=2021-04-01&rft.volume=34&rft.issue=2&rft.spage=621&rft.epage=634&rft.pages=621-634&rft.issn=1541-6933&rft.eissn=1556-0961&rft_id=info:doi/10.1007/s12028-020-01027-w&rft_dat=%3Cproquest_cross%3E2919332607%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919332607&rft_id=info:pmid/32572823&rfr_iscdi=true |