Mammalian GPI-anchor modifications and the enzymes involved
Glycosylphosphatidylinositol (GPI) is a glycolipid added to the C-terminus of a large variety of proteins in eukaryotes, thereby anchoring these proteins to the cell surface. More than 150 different human proteins are modified with GPI, and GPI-anchored proteins (GPI-APs) play critical roles in embr...
Gespeichert in:
Veröffentlicht in: | Biochemical Society transactions 2020-06, Vol.48 (3), p.1129-1138 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1138 |
---|---|
container_issue | 3 |
container_start_page | 1129 |
container_title | Biochemical Society transactions |
container_volume | 48 |
creator | Liu, Yi-Shi Fujita, Morihisa |
description | Glycosylphosphatidylinositol (GPI) is a glycolipid added to the C-terminus of a large variety of proteins in eukaryotes, thereby anchoring these proteins to the cell surface. More than 150 different human proteins are modified with GPI, and GPI-anchored proteins (GPI-APs) play critical roles in embryogenesis, neurogenesis, immunity, and fertilization. GPI-APs are biosynthesized in the endoplasmic reticulum (ER) and transported to the plasma membrane via the Golgi apparatus. During transport, GPI-APs undergo structural remodeling that is important for the efficient folding and sorting of GPI-APs. Asparagine-linked glycan-dependent folding and deacylation by PGAP1 work together to ensure that correctly folded GPI-APs are transported from the ER to the Golgi. Remodeling of the GPI lipid moiety is critical for the association of GPI-APs with lipid rafts. On the cell surface, certain GPI-APs are cleaved by GPI cleavage enzymes and released from the membrane, a key event in processes such as spermatogenesis and neurogenesis. In this review, we discuss the enzymes involved in GPI-AP biosynthesis and the fate of GPI-APs in mammalian cells, with a focus on the assembly, folding, degradation, and cleavage of GPI-APs. |
doi_str_mv | 10.1042/BST20191142 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2416265438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2416265438</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-b84edde0a091bcd68bc8c7dbafc0d7b60e39b45507218094f2d91afd934aea463</originalsourceid><addsrcrecordid>eNpN0M1LwzAcxvEgipvTk3fpUZDqL29NiycdOgcTBee55K0s0iSz6Qbzr3eyKZ6ey4fn8EXoHMM1BkZu7t_mBHCFMSMHaIiZgLwUnByiIVCAnGMiBugkpQ8AzDArjtGAEi5oIcQQ3T5L72XrZMgmr9NcBr2IXeajcY3TsncxpEwGk_ULm9nwtfE2ZS6sY7u25hQdNbJN9my_I_T--DAfP-Wzl8l0fDfLNSO8z1XJrDEWJFRYaVOUSpdaGCUbDUaoAiytFOMcBMElVKwhpsKyMRVl0kpW0BG63P0uu_i5sqmvvUvatq0MNq5STRguSMEZLbf0akd1F1PqbFMvO-dlt6kx1D-16n-1tvpif7xS3po_-5uHfgNJ4WRW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416265438</pqid></control><display><type>article</type><title>Mammalian GPI-anchor modifications and the enzymes involved</title><source>MEDLINE</source><source>Portland Press Electronic Journals</source><creator>Liu, Yi-Shi ; Fujita, Morihisa</creator><creatorcontrib>Liu, Yi-Shi ; Fujita, Morihisa</creatorcontrib><description>Glycosylphosphatidylinositol (GPI) is a glycolipid added to the C-terminus of a large variety of proteins in eukaryotes, thereby anchoring these proteins to the cell surface. More than 150 different human proteins are modified with GPI, and GPI-anchored proteins (GPI-APs) play critical roles in embryogenesis, neurogenesis, immunity, and fertilization. GPI-APs are biosynthesized in the endoplasmic reticulum (ER) and transported to the plasma membrane via the Golgi apparatus. During transport, GPI-APs undergo structural remodeling that is important for the efficient folding and sorting of GPI-APs. Asparagine-linked glycan-dependent folding and deacylation by PGAP1 work together to ensure that correctly folded GPI-APs are transported from the ER to the Golgi. Remodeling of the GPI lipid moiety is critical for the association of GPI-APs with lipid rafts. On the cell surface, certain GPI-APs are cleaved by GPI cleavage enzymes and released from the membrane, a key event in processes such as spermatogenesis and neurogenesis. In this review, we discuss the enzymes involved in GPI-AP biosynthesis and the fate of GPI-APs in mammalian cells, with a focus on the assembly, folding, degradation, and cleavage of GPI-APs.</description><identifier>ISSN: 0300-5127</identifier><identifier>EISSN: 1470-8752</identifier><identifier>DOI: 10.1042/BST20191142</identifier><identifier>PMID: 32573677</identifier><language>eng</language><publisher>England</publisher><subject>Animals ; Cell Membrane - metabolism ; Endoplasmic Reticulum - enzymology ; Glycosylphosphatidylinositols - biosynthesis ; Golgi Apparatus - enzymology ; Humans ; Male ; Membrane Microdomains - enzymology ; Membrane Proteins - metabolism ; Neurogenesis ; Protein Domains ; Protein Folding ; Protein Transport ; Spermatogenesis</subject><ispartof>Biochemical Society transactions, 2020-06, Vol.48 (3), p.1129-1138</ispartof><rights>2020 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-b84edde0a091bcd68bc8c7dbafc0d7b60e39b45507218094f2d91afd934aea463</citedby><cites>FETCH-LOGICAL-c425t-b84edde0a091bcd68bc8c7dbafc0d7b60e39b45507218094f2d91afd934aea463</cites><orcidid>0000-0002-0344-2408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3253,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32573677$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yi-Shi</creatorcontrib><creatorcontrib>Fujita, Morihisa</creatorcontrib><title>Mammalian GPI-anchor modifications and the enzymes involved</title><title>Biochemical Society transactions</title><addtitle>Biochem Soc Trans</addtitle><description>Glycosylphosphatidylinositol (GPI) is a glycolipid added to the C-terminus of a large variety of proteins in eukaryotes, thereby anchoring these proteins to the cell surface. More than 150 different human proteins are modified with GPI, and GPI-anchored proteins (GPI-APs) play critical roles in embryogenesis, neurogenesis, immunity, and fertilization. GPI-APs are biosynthesized in the endoplasmic reticulum (ER) and transported to the plasma membrane via the Golgi apparatus. During transport, GPI-APs undergo structural remodeling that is important for the efficient folding and sorting of GPI-APs. Asparagine-linked glycan-dependent folding and deacylation by PGAP1 work together to ensure that correctly folded GPI-APs are transported from the ER to the Golgi. Remodeling of the GPI lipid moiety is critical for the association of GPI-APs with lipid rafts. On the cell surface, certain GPI-APs are cleaved by GPI cleavage enzymes and released from the membrane, a key event in processes such as spermatogenesis and neurogenesis. In this review, we discuss the enzymes involved in GPI-AP biosynthesis and the fate of GPI-APs in mammalian cells, with a focus on the assembly, folding, degradation, and cleavage of GPI-APs.</description><subject>Animals</subject><subject>Cell Membrane - metabolism</subject><subject>Endoplasmic Reticulum - enzymology</subject><subject>Glycosylphosphatidylinositols - biosynthesis</subject><subject>Golgi Apparatus - enzymology</subject><subject>Humans</subject><subject>Male</subject><subject>Membrane Microdomains - enzymology</subject><subject>Membrane Proteins - metabolism</subject><subject>Neurogenesis</subject><subject>Protein Domains</subject><subject>Protein Folding</subject><subject>Protein Transport</subject><subject>Spermatogenesis</subject><issn>0300-5127</issn><issn>1470-8752</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpN0M1LwzAcxvEgipvTk3fpUZDqL29NiycdOgcTBee55K0s0iSz6Qbzr3eyKZ6ey4fn8EXoHMM1BkZu7t_mBHCFMSMHaIiZgLwUnByiIVCAnGMiBugkpQ8AzDArjtGAEi5oIcQQ3T5L72XrZMgmr9NcBr2IXeajcY3TsncxpEwGk_ULm9nwtfE2ZS6sY7u25hQdNbJN9my_I_T--DAfP-Wzl8l0fDfLNSO8z1XJrDEWJFRYaVOUSpdaGCUbDUaoAiytFOMcBMElVKwhpsKyMRVl0kpW0BG63P0uu_i5sqmvvUvatq0MNq5STRguSMEZLbf0akd1F1PqbFMvO-dlt6kx1D-16n-1tvpif7xS3po_-5uHfgNJ4WRW</recordid><startdate>20200630</startdate><enddate>20200630</enddate><creator>Liu, Yi-Shi</creator><creator>Fujita, Morihisa</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0344-2408</orcidid></search><sort><creationdate>20200630</creationdate><title>Mammalian GPI-anchor modifications and the enzymes involved</title><author>Liu, Yi-Shi ; Fujita, Morihisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-b84edde0a091bcd68bc8c7dbafc0d7b60e39b45507218094f2d91afd934aea463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Cell Membrane - metabolism</topic><topic>Endoplasmic Reticulum - enzymology</topic><topic>Glycosylphosphatidylinositols - biosynthesis</topic><topic>Golgi Apparatus - enzymology</topic><topic>Humans</topic><topic>Male</topic><topic>Membrane Microdomains - enzymology</topic><topic>Membrane Proteins - metabolism</topic><topic>Neurogenesis</topic><topic>Protein Domains</topic><topic>Protein Folding</topic><topic>Protein Transport</topic><topic>Spermatogenesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yi-Shi</creatorcontrib><creatorcontrib>Fujita, Morihisa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemical Society transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yi-Shi</au><au>Fujita, Morihisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mammalian GPI-anchor modifications and the enzymes involved</atitle><jtitle>Biochemical Society transactions</jtitle><addtitle>Biochem Soc Trans</addtitle><date>2020-06-30</date><risdate>2020</risdate><volume>48</volume><issue>3</issue><spage>1129</spage><epage>1138</epage><pages>1129-1138</pages><issn>0300-5127</issn><eissn>1470-8752</eissn><abstract>Glycosylphosphatidylinositol (GPI) is a glycolipid added to the C-terminus of a large variety of proteins in eukaryotes, thereby anchoring these proteins to the cell surface. More than 150 different human proteins are modified with GPI, and GPI-anchored proteins (GPI-APs) play critical roles in embryogenesis, neurogenesis, immunity, and fertilization. GPI-APs are biosynthesized in the endoplasmic reticulum (ER) and transported to the plasma membrane via the Golgi apparatus. During transport, GPI-APs undergo structural remodeling that is important for the efficient folding and sorting of GPI-APs. Asparagine-linked glycan-dependent folding and deacylation by PGAP1 work together to ensure that correctly folded GPI-APs are transported from the ER to the Golgi. Remodeling of the GPI lipid moiety is critical for the association of GPI-APs with lipid rafts. On the cell surface, certain GPI-APs are cleaved by GPI cleavage enzymes and released from the membrane, a key event in processes such as spermatogenesis and neurogenesis. In this review, we discuss the enzymes involved in GPI-AP biosynthesis and the fate of GPI-APs in mammalian cells, with a focus on the assembly, folding, degradation, and cleavage of GPI-APs.</abstract><cop>England</cop><pmid>32573677</pmid><doi>10.1042/BST20191142</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0344-2408</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0300-5127 |
ispartof | Biochemical Society transactions, 2020-06, Vol.48 (3), p.1129-1138 |
issn | 0300-5127 1470-8752 |
language | eng |
recordid | cdi_proquest_miscellaneous_2416265438 |
source | MEDLINE; Portland Press Electronic Journals |
subjects | Animals Cell Membrane - metabolism Endoplasmic Reticulum - enzymology Glycosylphosphatidylinositols - biosynthesis Golgi Apparatus - enzymology Humans Male Membrane Microdomains - enzymology Membrane Proteins - metabolism Neurogenesis Protein Domains Protein Folding Protein Transport Spermatogenesis |
title | Mammalian GPI-anchor modifications and the enzymes involved |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A20%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mammalian%20GPI-anchor%20modifications%20and%20the%20enzymes%20involved&rft.jtitle=Biochemical%20Society%20transactions&rft.au=Liu,%20Yi-Shi&rft.date=2020-06-30&rft.volume=48&rft.issue=3&rft.spage=1129&rft.epage=1138&rft.pages=1129-1138&rft.issn=0300-5127&rft.eissn=1470-8752&rft_id=info:doi/10.1042/BST20191142&rft_dat=%3Cproquest_cross%3E2416265438%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2416265438&rft_id=info:pmid/32573677&rfr_iscdi=true |