Role of Arg243 and His239 Residues in the Recognition of Damaged Nucleotides by Human Uracil-DNA Glycosylase SMUG1

Human uracil-DNA glycosylase SMUG1 removes uracil residues and some other noncanonical or damaged bases from DNA. Despite the functional importance of this enzyme, its X-ray structure is still unavailable. Previously, we performed homology modeling of human SMUG1 structure and suggested the roles of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Moscow) 2020-05, Vol.85 (5), p.594-603
Hauptverfasser: Iakovlev, D. A., Alekseeva, I. V., Kuznetsov, N. A., Fedorova, O. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 603
container_issue 5
container_start_page 594
container_title Biochemistry (Moscow)
container_volume 85
creator Iakovlev, D. A.
Alekseeva, I. V.
Kuznetsov, N. A.
Fedorova, O. S.
description Human uracil-DNA glycosylase SMUG1 removes uracil residues and some other noncanonical or damaged bases from DNA. Despite the functional importance of this enzyme, its X-ray structure is still unavailable. Previously, we performed homology modeling of human SMUG1 structure and suggested the roles of some amino acid residues in the recognition of damaged nucleotides and their removal from DNA. In this study, we investigated the kinetics of conformational transitions in the protein and in various DNA substrates during enzymatic catalysis using the stopped-flow method based on changes in the fluorescence intensity of enzyme’s tryptophan residues and 2-aminopurine in DNA or fluorescence resonance energy transfer (FRET) between fluorophores in DNA. The kinetic mechanism of interactions between reaction intermediates was identified, and kinetic parameters of the intermediate formation and dissociation were calculated. The obtained data help in elucidating the functions of His239 and Arg243 residues in the recognition and removal of damaged nucleotides by SMUG1.
doi_str_mv 10.1134/S0006297920050089
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2416264685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A624350931</galeid><sourcerecordid>A624350931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-ff886673f54681598640b8569c746fcc3a46d53e787f74c280daf4cf956b64d23</originalsourceid><addsrcrecordid>eNp1kctu1DAUhi0EotPCA7BBltiwSfE99nLUwgxSKVLLrCOPL8FVYhc7Wczb42haKm7ywjrnfP-vcwHgDUbnGFP24RYhJIhqFUGIIyTVM7DCAsmGIoaeg9VSbpb6CTgt5a6GBCn6EpxQwluMpVqBfJMGB5OH69wTRqGOFm5DIVTBG1eCnV2BIcLpu6uxSX0MU0hxEVzqUffOwuvZDC5NwVZyf4DbedQR7rI2YWgur9dwMxxMKodBFwdvv-w2-BV44fVQ3OuH_wzsPn38drFtrr5uPl-srxrDKJsa76UUoqWeMyExV1IwtJdcKNMy4Y2hmgnLqWtl61tmiERWe2a84mIvmCX0DLw_-t7n9KPOMXVjKMYNg44uzaUjDAsiqjmv6Ls_0Ls051i7qxRihEmO5RPV68F1Ifo01TEX024t6vJ4XS6u1Pk_qPqsG4NJ0flQ878J8FFgciolO9_d5zDqfOgw6pY7d3_duWrePjQ870dnfykeD1sBcgRKLcXe5aeJ_u_6Ex9CrCM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404248518</pqid></control><display><type>article</type><title>Role of Arg243 and His239 Residues in the Recognition of Damaged Nucleotides by Human Uracil-DNA Glycosylase SMUG1</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Iakovlev, D. A. ; Alekseeva, I. V. ; Kuznetsov, N. A. ; Fedorova, O. S.</creator><creatorcontrib>Iakovlev, D. A. ; Alekseeva, I. V. ; Kuznetsov, N. A. ; Fedorova, O. S.</creatorcontrib><description>Human uracil-DNA glycosylase SMUG1 removes uracil residues and some other noncanonical or damaged bases from DNA. Despite the functional importance of this enzyme, its X-ray structure is still unavailable. Previously, we performed homology modeling of human SMUG1 structure and suggested the roles of some amino acid residues in the recognition of damaged nucleotides and their removal from DNA. In this study, we investigated the kinetics of conformational transitions in the protein and in various DNA substrates during enzymatic catalysis using the stopped-flow method based on changes in the fluorescence intensity of enzyme’s tryptophan residues and 2-aminopurine in DNA or fluorescence resonance energy transfer (FRET) between fluorophores in DNA. The kinetic mechanism of interactions between reaction intermediates was identified, and kinetic parameters of the intermediate formation and dissociation were calculated. The obtained data help in elucidating the functions of His239 and Arg243 residues in the recognition and removal of damaged nucleotides by SMUG1.</description><identifier>ISSN: 0006-2979</identifier><identifier>EISSN: 1608-3040</identifier><identifier>DOI: 10.1134/S0006297920050089</identifier><identifier>PMID: 32571189</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>2-Aminopurine ; Amino Acid Sequence ; Amino acids ; Analysis ; Arginine - chemistry ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Bioorganic Chemistry ; Catalysis ; Catalytic Domain ; Chemical compounds ; Deoxyribonucleic acid ; DNA ; DNA Damage ; DNA glycosylase ; DNA Repair ; Energy transfer ; Enzymes ; Ethylenediaminetetraacetic acid ; Fluorescence ; Fluorescence resonance energy transfer ; Fluorophores ; Histidine - chemistry ; Homology ; Humans ; Intermediates ; Kinetics ; Life Sciences ; Microbiology ; Molecular Dynamics Simulation ; Nucleotides ; Parameter identification ; Pyrimidines ; Reaction intermediates ; Reaction kinetics ; Recognition ; Residues ; Sequence Homology ; SMUG1 protein ; Substrate Specificity ; Substrates ; Tryptophan ; Uracil ; Uracil - metabolism ; Uracil-DNA glycosidase ; Uracil-DNA Glycosidase - chemistry ; Uracil-DNA Glycosidase - genetics ; Uracil-DNA Glycosidase - metabolism</subject><ispartof>Biochemistry (Moscow), 2020-05, Vol.85 (5), p.594-603</ispartof><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>The Author(s) 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c434t-ff886673f54681598640b8569c746fcc3a46d53e787f74c280daf4cf956b64d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0006297920050089$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0006297920050089$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32571189$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iakovlev, D. A.</creatorcontrib><creatorcontrib>Alekseeva, I. V.</creatorcontrib><creatorcontrib>Kuznetsov, N. A.</creatorcontrib><creatorcontrib>Fedorova, O. S.</creatorcontrib><title>Role of Arg243 and His239 Residues in the Recognition of Damaged Nucleotides by Human Uracil-DNA Glycosylase SMUG1</title><title>Biochemistry (Moscow)</title><addtitle>Biochemistry Moscow</addtitle><addtitle>Biochemistry (Mosc)</addtitle><description>Human uracil-DNA glycosylase SMUG1 removes uracil residues and some other noncanonical or damaged bases from DNA. Despite the functional importance of this enzyme, its X-ray structure is still unavailable. Previously, we performed homology modeling of human SMUG1 structure and suggested the roles of some amino acid residues in the recognition of damaged nucleotides and their removal from DNA. In this study, we investigated the kinetics of conformational transitions in the protein and in various DNA substrates during enzymatic catalysis using the stopped-flow method based on changes in the fluorescence intensity of enzyme’s tryptophan residues and 2-aminopurine in DNA or fluorescence resonance energy transfer (FRET) between fluorophores in DNA. The kinetic mechanism of interactions between reaction intermediates was identified, and kinetic parameters of the intermediate formation and dissociation were calculated. The obtained data help in elucidating the functions of His239 and Arg243 residues in the recognition and removal of damaged nucleotides by SMUG1.</description><subject>2-Aminopurine</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Analysis</subject><subject>Arginine - chemistry</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bioorganic Chemistry</subject><subject>Catalysis</subject><subject>Catalytic Domain</subject><subject>Chemical compounds</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Damage</subject><subject>DNA glycosylase</subject><subject>DNA Repair</subject><subject>Energy transfer</subject><subject>Enzymes</subject><subject>Ethylenediaminetetraacetic acid</subject><subject>Fluorescence</subject><subject>Fluorescence resonance energy transfer</subject><subject>Fluorophores</subject><subject>Histidine - chemistry</subject><subject>Homology</subject><subject>Humans</subject><subject>Intermediates</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Microbiology</subject><subject>Molecular Dynamics Simulation</subject><subject>Nucleotides</subject><subject>Parameter identification</subject><subject>Pyrimidines</subject><subject>Reaction intermediates</subject><subject>Reaction kinetics</subject><subject>Recognition</subject><subject>Residues</subject><subject>Sequence Homology</subject><subject>SMUG1 protein</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><subject>Tryptophan</subject><subject>Uracil</subject><subject>Uracil - metabolism</subject><subject>Uracil-DNA glycosidase</subject><subject>Uracil-DNA Glycosidase - chemistry</subject><subject>Uracil-DNA Glycosidase - genetics</subject><subject>Uracil-DNA Glycosidase - metabolism</subject><issn>0006-2979</issn><issn>1608-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kctu1DAUhi0EotPCA7BBltiwSfE99nLUwgxSKVLLrCOPL8FVYhc7Wczb42haKm7ywjrnfP-vcwHgDUbnGFP24RYhJIhqFUGIIyTVM7DCAsmGIoaeg9VSbpb6CTgt5a6GBCn6EpxQwluMpVqBfJMGB5OH69wTRqGOFm5DIVTBG1eCnV2BIcLpu6uxSX0MU0hxEVzqUffOwuvZDC5NwVZyf4DbedQR7rI2YWgur9dwMxxMKodBFwdvv-w2-BV44fVQ3OuH_wzsPn38drFtrr5uPl-srxrDKJsa76UUoqWeMyExV1IwtJdcKNMy4Y2hmgnLqWtl61tmiERWe2a84mIvmCX0DLw_-t7n9KPOMXVjKMYNg44uzaUjDAsiqjmv6Ls_0Ls051i7qxRihEmO5RPV68F1Ifo01TEX024t6vJ4XS6u1Pk_qPqsG4NJ0flQ878J8FFgciolO9_d5zDqfOgw6pY7d3_duWrePjQ870dnfykeD1sBcgRKLcXe5aeJ_u_6Ex9CrCM</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Iakovlev, D. A.</creator><creator>Alekseeva, I. V.</creator><creator>Kuznetsov, N. A.</creator><creator>Fedorova, O. S.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20200501</creationdate><title>Role of Arg243 and His239 Residues in the Recognition of Damaged Nucleotides by Human Uracil-DNA Glycosylase SMUG1</title><author>Iakovlev, D. A. ; Alekseeva, I. V. ; Kuznetsov, N. A. ; Fedorova, O. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-ff886673f54681598640b8569c746fcc3a46d53e787f74c280daf4cf956b64d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>2-Aminopurine</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Analysis</topic><topic>Arginine - chemistry</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bioorganic Chemistry</topic><topic>Catalysis</topic><topic>Catalytic Domain</topic><topic>Chemical compounds</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Damage</topic><topic>DNA glycosylase</topic><topic>DNA Repair</topic><topic>Energy transfer</topic><topic>Enzymes</topic><topic>Ethylenediaminetetraacetic acid</topic><topic>Fluorescence</topic><topic>Fluorescence resonance energy transfer</topic><topic>Fluorophores</topic><topic>Histidine - chemistry</topic><topic>Homology</topic><topic>Humans</topic><topic>Intermediates</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Microbiology</topic><topic>Molecular Dynamics Simulation</topic><topic>Nucleotides</topic><topic>Parameter identification</topic><topic>Pyrimidines</topic><topic>Reaction intermediates</topic><topic>Reaction kinetics</topic><topic>Recognition</topic><topic>Residues</topic><topic>Sequence Homology</topic><topic>SMUG1 protein</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><topic>Tryptophan</topic><topic>Uracil</topic><topic>Uracil - metabolism</topic><topic>Uracil-DNA glycosidase</topic><topic>Uracil-DNA Glycosidase - chemistry</topic><topic>Uracil-DNA Glycosidase - genetics</topic><topic>Uracil-DNA Glycosidase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iakovlev, D. A.</creatorcontrib><creatorcontrib>Alekseeva, I. V.</creatorcontrib><creatorcontrib>Kuznetsov, N. A.</creatorcontrib><creatorcontrib>Fedorova, O. S.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Moscow)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iakovlev, D. A.</au><au>Alekseeva, I. V.</au><au>Kuznetsov, N. A.</au><au>Fedorova, O. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Arg243 and His239 Residues in the Recognition of Damaged Nucleotides by Human Uracil-DNA Glycosylase SMUG1</atitle><jtitle>Biochemistry (Moscow)</jtitle><stitle>Biochemistry Moscow</stitle><addtitle>Biochemistry (Mosc)</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>85</volume><issue>5</issue><spage>594</spage><epage>603</epage><pages>594-603</pages><issn>0006-2979</issn><eissn>1608-3040</eissn><abstract>Human uracil-DNA glycosylase SMUG1 removes uracil residues and some other noncanonical or damaged bases from DNA. Despite the functional importance of this enzyme, its X-ray structure is still unavailable. Previously, we performed homology modeling of human SMUG1 structure and suggested the roles of some amino acid residues in the recognition of damaged nucleotides and their removal from DNA. In this study, we investigated the kinetics of conformational transitions in the protein and in various DNA substrates during enzymatic catalysis using the stopped-flow method based on changes in the fluorescence intensity of enzyme’s tryptophan residues and 2-aminopurine in DNA or fluorescence resonance energy transfer (FRET) between fluorophores in DNA. The kinetic mechanism of interactions between reaction intermediates was identified, and kinetic parameters of the intermediate formation and dissociation were calculated. The obtained data help in elucidating the functions of His239 and Arg243 residues in the recognition and removal of damaged nucleotides by SMUG1.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><pmid>32571189</pmid><doi>10.1134/S0006297920050089</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-2979
ispartof Biochemistry (Moscow), 2020-05, Vol.85 (5), p.594-603
issn 0006-2979
1608-3040
language eng
recordid cdi_proquest_miscellaneous_2416264685
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects 2-Aminopurine
Amino Acid Sequence
Amino acids
Analysis
Arginine - chemistry
Biochemistry
Biomedical and Life Sciences
Biomedicine
Bioorganic Chemistry
Catalysis
Catalytic Domain
Chemical compounds
Deoxyribonucleic acid
DNA
DNA Damage
DNA glycosylase
DNA Repair
Energy transfer
Enzymes
Ethylenediaminetetraacetic acid
Fluorescence
Fluorescence resonance energy transfer
Fluorophores
Histidine - chemistry
Homology
Humans
Intermediates
Kinetics
Life Sciences
Microbiology
Molecular Dynamics Simulation
Nucleotides
Parameter identification
Pyrimidines
Reaction intermediates
Reaction kinetics
Recognition
Residues
Sequence Homology
SMUG1 protein
Substrate Specificity
Substrates
Tryptophan
Uracil
Uracil - metabolism
Uracil-DNA glycosidase
Uracil-DNA Glycosidase - chemistry
Uracil-DNA Glycosidase - genetics
Uracil-DNA Glycosidase - metabolism
title Role of Arg243 and His239 Residues in the Recognition of Damaged Nucleotides by Human Uracil-DNA Glycosylase SMUG1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A35%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Arg243%20and%20His239%20Residues%20in%20the%20Recognition%20of%20Damaged%20Nucleotides%20by%20Human%20Uracil-DNA%20Glycosylase%20SMUG1&rft.jtitle=Biochemistry%20(Moscow)&rft.au=Iakovlev,%20D.%20A.&rft.date=2020-05-01&rft.volume=85&rft.issue=5&rft.spage=594&rft.epage=603&rft.pages=594-603&rft.issn=0006-2979&rft.eissn=1608-3040&rft_id=info:doi/10.1134/S0006297920050089&rft_dat=%3Cgale_proqu%3EA624350931%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404248518&rft_id=info:pmid/32571189&rft_galeid=A624350931&rfr_iscdi=true