Role of Arg243 and His239 Residues in the Recognition of Damaged Nucleotides by Human Uracil-DNA Glycosylase SMUG1
Human uracil-DNA glycosylase SMUG1 removes uracil residues and some other noncanonical or damaged bases from DNA. Despite the functional importance of this enzyme, its X-ray structure is still unavailable. Previously, we performed homology modeling of human SMUG1 structure and suggested the roles of...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Moscow) 2020-05, Vol.85 (5), p.594-603 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 603 |
---|---|
container_issue | 5 |
container_start_page | 594 |
container_title | Biochemistry (Moscow) |
container_volume | 85 |
creator | Iakovlev, D. A. Alekseeva, I. V. Kuznetsov, N. A. Fedorova, O. S. |
description | Human uracil-DNA glycosylase SMUG1 removes uracil residues and some other noncanonical or damaged bases from DNA. Despite the functional importance of this enzyme, its X-ray structure is still unavailable. Previously, we performed homology modeling of human SMUG1 structure and suggested the roles of some amino acid residues in the recognition of damaged nucleotides and their removal from DNA. In this study, we investigated the kinetics of conformational transitions in the protein and in various DNA substrates during enzymatic catalysis using the stopped-flow method based on changes in the fluorescence intensity of enzyme’s tryptophan residues and 2-aminopurine in DNA or fluorescence resonance energy transfer (FRET) between fluorophores in DNA. The kinetic mechanism of interactions between reaction intermediates was identified, and kinetic parameters of the intermediate formation and dissociation were calculated. The obtained data help in elucidating the functions of His239 and Arg243 residues in the recognition and removal of damaged nucleotides by SMUG1. |
doi_str_mv | 10.1134/S0006297920050089 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2416264685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A624350931</galeid><sourcerecordid>A624350931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-ff886673f54681598640b8569c746fcc3a46d53e787f74c280daf4cf956b64d23</originalsourceid><addsrcrecordid>eNp1kctu1DAUhi0EotPCA7BBltiwSfE99nLUwgxSKVLLrCOPL8FVYhc7Wczb42haKm7ywjrnfP-vcwHgDUbnGFP24RYhJIhqFUGIIyTVM7DCAsmGIoaeg9VSbpb6CTgt5a6GBCn6EpxQwluMpVqBfJMGB5OH69wTRqGOFm5DIVTBG1eCnV2BIcLpu6uxSX0MU0hxEVzqUffOwuvZDC5NwVZyf4DbedQR7rI2YWgur9dwMxxMKodBFwdvv-w2-BV44fVQ3OuH_wzsPn38drFtrr5uPl-srxrDKJsa76UUoqWeMyExV1IwtJdcKNMy4Y2hmgnLqWtl61tmiERWe2a84mIvmCX0DLw_-t7n9KPOMXVjKMYNg44uzaUjDAsiqjmv6Ls_0Ls051i7qxRihEmO5RPV68F1Ifo01TEX024t6vJ4XS6u1Pk_qPqsG4NJ0flQ878J8FFgciolO9_d5zDqfOgw6pY7d3_duWrePjQ870dnfykeD1sBcgRKLcXe5aeJ_u_6Ex9CrCM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404248518</pqid></control><display><type>article</type><title>Role of Arg243 and His239 Residues in the Recognition of Damaged Nucleotides by Human Uracil-DNA Glycosylase SMUG1</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Iakovlev, D. A. ; Alekseeva, I. V. ; Kuznetsov, N. A. ; Fedorova, O. S.</creator><creatorcontrib>Iakovlev, D. A. ; Alekseeva, I. V. ; Kuznetsov, N. A. ; Fedorova, O. S.</creatorcontrib><description>Human uracil-DNA glycosylase SMUG1 removes uracil residues and some other noncanonical or damaged bases from DNA. Despite the functional importance of this enzyme, its X-ray structure is still unavailable. Previously, we performed homology modeling of human SMUG1 structure and suggested the roles of some amino acid residues in the recognition of damaged nucleotides and their removal from DNA. In this study, we investigated the kinetics of conformational transitions in the protein and in various DNA substrates during enzymatic catalysis using the stopped-flow method based on changes in the fluorescence intensity of enzyme’s tryptophan residues and 2-aminopurine in DNA or fluorescence resonance energy transfer (FRET) between fluorophores in DNA. The kinetic mechanism of interactions between reaction intermediates was identified, and kinetic parameters of the intermediate formation and dissociation were calculated. The obtained data help in elucidating the functions of His239 and Arg243 residues in the recognition and removal of damaged nucleotides by SMUG1.</description><identifier>ISSN: 0006-2979</identifier><identifier>EISSN: 1608-3040</identifier><identifier>DOI: 10.1134/S0006297920050089</identifier><identifier>PMID: 32571189</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>2-Aminopurine ; Amino Acid Sequence ; Amino acids ; Analysis ; Arginine - chemistry ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Bioorganic Chemistry ; Catalysis ; Catalytic Domain ; Chemical compounds ; Deoxyribonucleic acid ; DNA ; DNA Damage ; DNA glycosylase ; DNA Repair ; Energy transfer ; Enzymes ; Ethylenediaminetetraacetic acid ; Fluorescence ; Fluorescence resonance energy transfer ; Fluorophores ; Histidine - chemistry ; Homology ; Humans ; Intermediates ; Kinetics ; Life Sciences ; Microbiology ; Molecular Dynamics Simulation ; Nucleotides ; Parameter identification ; Pyrimidines ; Reaction intermediates ; Reaction kinetics ; Recognition ; Residues ; Sequence Homology ; SMUG1 protein ; Substrate Specificity ; Substrates ; Tryptophan ; Uracil ; Uracil - metabolism ; Uracil-DNA glycosidase ; Uracil-DNA Glycosidase - chemistry ; Uracil-DNA Glycosidase - genetics ; Uracil-DNA Glycosidase - metabolism</subject><ispartof>Biochemistry (Moscow), 2020-05, Vol.85 (5), p.594-603</ispartof><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>The Author(s) 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c434t-ff886673f54681598640b8569c746fcc3a46d53e787f74c280daf4cf956b64d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0006297920050089$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0006297920050089$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32571189$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iakovlev, D. A.</creatorcontrib><creatorcontrib>Alekseeva, I. V.</creatorcontrib><creatorcontrib>Kuznetsov, N. A.</creatorcontrib><creatorcontrib>Fedorova, O. S.</creatorcontrib><title>Role of Arg243 and His239 Residues in the Recognition of Damaged Nucleotides by Human Uracil-DNA Glycosylase SMUG1</title><title>Biochemistry (Moscow)</title><addtitle>Biochemistry Moscow</addtitle><addtitle>Biochemistry (Mosc)</addtitle><description>Human uracil-DNA glycosylase SMUG1 removes uracil residues and some other noncanonical or damaged bases from DNA. Despite the functional importance of this enzyme, its X-ray structure is still unavailable. Previously, we performed homology modeling of human SMUG1 structure and suggested the roles of some amino acid residues in the recognition of damaged nucleotides and their removal from DNA. In this study, we investigated the kinetics of conformational transitions in the protein and in various DNA substrates during enzymatic catalysis using the stopped-flow method based on changes in the fluorescence intensity of enzyme’s tryptophan residues and 2-aminopurine in DNA or fluorescence resonance energy transfer (FRET) between fluorophores in DNA. The kinetic mechanism of interactions between reaction intermediates was identified, and kinetic parameters of the intermediate formation and dissociation were calculated. The obtained data help in elucidating the functions of His239 and Arg243 residues in the recognition and removal of damaged nucleotides by SMUG1.</description><subject>2-Aminopurine</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Analysis</subject><subject>Arginine - chemistry</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bioorganic Chemistry</subject><subject>Catalysis</subject><subject>Catalytic Domain</subject><subject>Chemical compounds</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Damage</subject><subject>DNA glycosylase</subject><subject>DNA Repair</subject><subject>Energy transfer</subject><subject>Enzymes</subject><subject>Ethylenediaminetetraacetic acid</subject><subject>Fluorescence</subject><subject>Fluorescence resonance energy transfer</subject><subject>Fluorophores</subject><subject>Histidine - chemistry</subject><subject>Homology</subject><subject>Humans</subject><subject>Intermediates</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Microbiology</subject><subject>Molecular Dynamics Simulation</subject><subject>Nucleotides</subject><subject>Parameter identification</subject><subject>Pyrimidines</subject><subject>Reaction intermediates</subject><subject>Reaction kinetics</subject><subject>Recognition</subject><subject>Residues</subject><subject>Sequence Homology</subject><subject>SMUG1 protein</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><subject>Tryptophan</subject><subject>Uracil</subject><subject>Uracil - metabolism</subject><subject>Uracil-DNA glycosidase</subject><subject>Uracil-DNA Glycosidase - chemistry</subject><subject>Uracil-DNA Glycosidase - genetics</subject><subject>Uracil-DNA Glycosidase - metabolism</subject><issn>0006-2979</issn><issn>1608-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kctu1DAUhi0EotPCA7BBltiwSfE99nLUwgxSKVLLrCOPL8FVYhc7Wczb42haKm7ywjrnfP-vcwHgDUbnGFP24RYhJIhqFUGIIyTVM7DCAsmGIoaeg9VSbpb6CTgt5a6GBCn6EpxQwluMpVqBfJMGB5OH69wTRqGOFm5DIVTBG1eCnV2BIcLpu6uxSX0MU0hxEVzqUffOwuvZDC5NwVZyf4DbedQR7rI2YWgur9dwMxxMKodBFwdvv-w2-BV44fVQ3OuH_wzsPn38drFtrr5uPl-srxrDKJsa76UUoqWeMyExV1IwtJdcKNMy4Y2hmgnLqWtl61tmiERWe2a84mIvmCX0DLw_-t7n9KPOMXVjKMYNg44uzaUjDAsiqjmv6Ls_0Ls051i7qxRihEmO5RPV68F1Ifo01TEX024t6vJ4XS6u1Pk_qPqsG4NJ0flQ878J8FFgciolO9_d5zDqfOgw6pY7d3_duWrePjQ870dnfykeD1sBcgRKLcXe5aeJ_u_6Ex9CrCM</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Iakovlev, D. A.</creator><creator>Alekseeva, I. V.</creator><creator>Kuznetsov, N. A.</creator><creator>Fedorova, O. S.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20200501</creationdate><title>Role of Arg243 and His239 Residues in the Recognition of Damaged Nucleotides by Human Uracil-DNA Glycosylase SMUG1</title><author>Iakovlev, D. A. ; Alekseeva, I. V. ; Kuznetsov, N. A. ; Fedorova, O. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-ff886673f54681598640b8569c746fcc3a46d53e787f74c280daf4cf956b64d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>2-Aminopurine</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Analysis</topic><topic>Arginine - chemistry</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bioorganic Chemistry</topic><topic>Catalysis</topic><topic>Catalytic Domain</topic><topic>Chemical compounds</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Damage</topic><topic>DNA glycosylase</topic><topic>DNA Repair</topic><topic>Energy transfer</topic><topic>Enzymes</topic><topic>Ethylenediaminetetraacetic acid</topic><topic>Fluorescence</topic><topic>Fluorescence resonance energy transfer</topic><topic>Fluorophores</topic><topic>Histidine - chemistry</topic><topic>Homology</topic><topic>Humans</topic><topic>Intermediates</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Microbiology</topic><topic>Molecular Dynamics Simulation</topic><topic>Nucleotides</topic><topic>Parameter identification</topic><topic>Pyrimidines</topic><topic>Reaction intermediates</topic><topic>Reaction kinetics</topic><topic>Recognition</topic><topic>Residues</topic><topic>Sequence Homology</topic><topic>SMUG1 protein</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><topic>Tryptophan</topic><topic>Uracil</topic><topic>Uracil - metabolism</topic><topic>Uracil-DNA glycosidase</topic><topic>Uracil-DNA Glycosidase - chemistry</topic><topic>Uracil-DNA Glycosidase - genetics</topic><topic>Uracil-DNA Glycosidase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iakovlev, D. A.</creatorcontrib><creatorcontrib>Alekseeva, I. V.</creatorcontrib><creatorcontrib>Kuznetsov, N. A.</creatorcontrib><creatorcontrib>Fedorova, O. S.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Moscow)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iakovlev, D. A.</au><au>Alekseeva, I. V.</au><au>Kuznetsov, N. A.</au><au>Fedorova, O. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Arg243 and His239 Residues in the Recognition of Damaged Nucleotides by Human Uracil-DNA Glycosylase SMUG1</atitle><jtitle>Biochemistry (Moscow)</jtitle><stitle>Biochemistry Moscow</stitle><addtitle>Biochemistry (Mosc)</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>85</volume><issue>5</issue><spage>594</spage><epage>603</epage><pages>594-603</pages><issn>0006-2979</issn><eissn>1608-3040</eissn><abstract>Human uracil-DNA glycosylase SMUG1 removes uracil residues and some other noncanonical or damaged bases from DNA. Despite the functional importance of this enzyme, its X-ray structure is still unavailable. Previously, we performed homology modeling of human SMUG1 structure and suggested the roles of some amino acid residues in the recognition of damaged nucleotides and their removal from DNA. In this study, we investigated the kinetics of conformational transitions in the protein and in various DNA substrates during enzymatic catalysis using the stopped-flow method based on changes in the fluorescence intensity of enzyme’s tryptophan residues and 2-aminopurine in DNA or fluorescence resonance energy transfer (FRET) between fluorophores in DNA. The kinetic mechanism of interactions between reaction intermediates was identified, and kinetic parameters of the intermediate formation and dissociation were calculated. The obtained data help in elucidating the functions of His239 and Arg243 residues in the recognition and removal of damaged nucleotides by SMUG1.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><pmid>32571189</pmid><doi>10.1134/S0006297920050089</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2979 |
ispartof | Biochemistry (Moscow), 2020-05, Vol.85 (5), p.594-603 |
issn | 0006-2979 1608-3040 |
language | eng |
recordid | cdi_proquest_miscellaneous_2416264685 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | 2-Aminopurine Amino Acid Sequence Amino acids Analysis Arginine - chemistry Biochemistry Biomedical and Life Sciences Biomedicine Bioorganic Chemistry Catalysis Catalytic Domain Chemical compounds Deoxyribonucleic acid DNA DNA Damage DNA glycosylase DNA Repair Energy transfer Enzymes Ethylenediaminetetraacetic acid Fluorescence Fluorescence resonance energy transfer Fluorophores Histidine - chemistry Homology Humans Intermediates Kinetics Life Sciences Microbiology Molecular Dynamics Simulation Nucleotides Parameter identification Pyrimidines Reaction intermediates Reaction kinetics Recognition Residues Sequence Homology SMUG1 protein Substrate Specificity Substrates Tryptophan Uracil Uracil - metabolism Uracil-DNA glycosidase Uracil-DNA Glycosidase - chemistry Uracil-DNA Glycosidase - genetics Uracil-DNA Glycosidase - metabolism |
title | Role of Arg243 and His239 Residues in the Recognition of Damaged Nucleotides by Human Uracil-DNA Glycosylase SMUG1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A35%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Arg243%20and%20His239%20Residues%20in%20the%20Recognition%20of%20Damaged%20Nucleotides%20by%20Human%20Uracil-DNA%20Glycosylase%20SMUG1&rft.jtitle=Biochemistry%20(Moscow)&rft.au=Iakovlev,%20D.%20A.&rft.date=2020-05-01&rft.volume=85&rft.issue=5&rft.spage=594&rft.epage=603&rft.pages=594-603&rft.issn=0006-2979&rft.eissn=1608-3040&rft_id=info:doi/10.1134/S0006297920050089&rft_dat=%3Cgale_proqu%3EA624350931%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404248518&rft_id=info:pmid/32571189&rft_galeid=A624350931&rfr_iscdi=true |