Estimation of seroconversion rates for infectious diseases: Effects of age and noise

The presence of serum antibodies is a biomarker of past infection. Instead of seroclassification aimed at measuring seroprevalence a population sample of serum antibody levels may be used to estimate the incidence of seroconversion. This article expands an earlier study into seroincidence estimation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2020-09, Vol.39 (21), p.2799-2814
Hauptverfasser: Teunis, P. F. M., Eijkeren, J. C. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2814
container_issue 21
container_start_page 2799
container_title Statistics in medicine
container_volume 39
creator Teunis, P. F. M.
Eijkeren, J. C. H.
description The presence of serum antibodies is a biomarker of past infection. Instead of seroclassification aimed at measuring seroprevalence a population sample of serum antibody levels may be used to estimate the incidence of seroconversion. This article expands an earlier study into seroincidence estimation, employing models of the seroresponse that include probability of escaping infection, as well as nonexponential decay kinetics and different sources of noise. As previously, a constant force of infection is assumed. When the seroconversion rate is low, a substantial fraction of the population may not be old enough to have experienced any seroconversions, causing underestimation of seroconversion rates that may be substantial at young ages. A correction is given that can be shown to remove such age dependent bias. Simulation studies show that the updated models provide accurate estimates of seroconversion rates, but also that the presence of noise, when unaccounted for, may introduce considerable bias, especially at low (< 0.1/yr) seroconversion rates and young ages. The revised serocalculator scripts can be used to update the R package “seroincidence.”
doi_str_mv 10.1002/sim.8578
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2416262178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430816430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4198-da9fccc00b31b0f1400cb1a2681e95ba737b976267b46537992d4607e56386213</originalsourceid><addsrcrecordid>eNp1kFFLwzAQx4Mobk7BTyAFX3zpzCVtkvomY-pg4oPzuaRpKh1tM3Obsm9v6qaC4Msd3P3ux_En5BzoGChl11i3Y5VKdUCGQDMZU5aqQzKkTMpYSEgH5ARxSSlAyuQxGXCWSq6AD8liiuu61evadZGrIrTeGde9W4_9xOu1xahyPqq7yppAbTAqa7QaLd5E06ofYn-oX22kuzLqXNiekqNKN2jP9n1EXu6mi8lDPH-6n01u57FJIFNxqbPKGENpwaGgFSSUmgI0EwpslhZacllkUjAhi0SkXGYZKxNBpU0FV4IBH5GrnXfl3dvG4jpvazS2aXRnw6c5SyBcM5AqoJd_0KXb-C58FyhOFYhQf4XGO0Rvq3zlQzp-mwPN-6TzkHTeJx3Qi71wU7S2_AG_ow1AvAM-6sZu_xXlz7PHL-EnukqFqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430816430</pqid></control><display><type>article</type><title>Estimation of seroconversion rates for infectious diseases: Effects of age and noise</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Teunis, P. F. M. ; Eijkeren, J. C. H.</creator><creatorcontrib>Teunis, P. F. M. ; Eijkeren, J. C. H.</creatorcontrib><description>The presence of serum antibodies is a biomarker of past infection. Instead of seroclassification aimed at measuring seroprevalence a population sample of serum antibody levels may be used to estimate the incidence of seroconversion. This article expands an earlier study into seroincidence estimation, employing models of the seroresponse that include probability of escaping infection, as well as nonexponential decay kinetics and different sources of noise. As previously, a constant force of infection is assumed. When the seroconversion rate is low, a substantial fraction of the population may not be old enough to have experienced any seroconversions, causing underestimation of seroconversion rates that may be substantial at young ages. A correction is given that can be shown to remove such age dependent bias. Simulation studies show that the updated models provide accurate estimates of seroconversion rates, but also that the presence of noise, when unaccounted for, may introduce considerable bias, especially at low (&lt; 0.1/yr) seroconversion rates and young ages. The revised serocalculator scripts can be used to update the R package “seroincidence.”</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.8578</identifier><identifier>PMID: 32573813</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>biomarker dynamics ; Infections ; Noise ; pertussis ; Serology</subject><ispartof>Statistics in medicine, 2020-09, Vol.39 (21), p.2799-2814</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4198-da9fccc00b31b0f1400cb1a2681e95ba737b976267b46537992d4607e56386213</citedby><cites>FETCH-LOGICAL-c4198-da9fccc00b31b0f1400cb1a2681e95ba737b976267b46537992d4607e56386213</cites><orcidid>0000-0003-1904-6044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.8578$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.8578$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32573813$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Teunis, P. F. M.</creatorcontrib><creatorcontrib>Eijkeren, J. C. H.</creatorcontrib><title>Estimation of seroconversion rates for infectious diseases: Effects of age and noise</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>The presence of serum antibodies is a biomarker of past infection. Instead of seroclassification aimed at measuring seroprevalence a population sample of serum antibody levels may be used to estimate the incidence of seroconversion. This article expands an earlier study into seroincidence estimation, employing models of the seroresponse that include probability of escaping infection, as well as nonexponential decay kinetics and different sources of noise. As previously, a constant force of infection is assumed. When the seroconversion rate is low, a substantial fraction of the population may not be old enough to have experienced any seroconversions, causing underestimation of seroconversion rates that may be substantial at young ages. A correction is given that can be shown to remove such age dependent bias. Simulation studies show that the updated models provide accurate estimates of seroconversion rates, but also that the presence of noise, when unaccounted for, may introduce considerable bias, especially at low (&lt; 0.1/yr) seroconversion rates and young ages. The revised serocalculator scripts can be used to update the R package “seroincidence.”</description><subject>biomarker dynamics</subject><subject>Infections</subject><subject>Noise</subject><subject>pertussis</subject><subject>Serology</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kFFLwzAQx4Mobk7BTyAFX3zpzCVtkvomY-pg4oPzuaRpKh1tM3Obsm9v6qaC4Msd3P3ux_En5BzoGChl11i3Y5VKdUCGQDMZU5aqQzKkTMpYSEgH5ARxSSlAyuQxGXCWSq6AD8liiuu61evadZGrIrTeGde9W4_9xOu1xahyPqq7yppAbTAqa7QaLd5E06ofYn-oX22kuzLqXNiekqNKN2jP9n1EXu6mi8lDPH-6n01u57FJIFNxqbPKGENpwaGgFSSUmgI0EwpslhZacllkUjAhi0SkXGYZKxNBpU0FV4IBH5GrnXfl3dvG4jpvazS2aXRnw6c5SyBcM5AqoJd_0KXb-C58FyhOFYhQf4XGO0Rvq3zlQzp-mwPN-6TzkHTeJx3Qi71wU7S2_AG_ow1AvAM-6sZu_xXlz7PHL-EnukqFqg</recordid><startdate>20200920</startdate><enddate>20200920</enddate><creator>Teunis, P. F. M.</creator><creator>Eijkeren, J. C. H.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1904-6044</orcidid></search><sort><creationdate>20200920</creationdate><title>Estimation of seroconversion rates for infectious diseases: Effects of age and noise</title><author>Teunis, P. F. M. ; Eijkeren, J. C. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4198-da9fccc00b31b0f1400cb1a2681e95ba737b976267b46537992d4607e56386213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>biomarker dynamics</topic><topic>Infections</topic><topic>Noise</topic><topic>pertussis</topic><topic>Serology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teunis, P. F. M.</creatorcontrib><creatorcontrib>Eijkeren, J. C. H.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teunis, P. F. M.</au><au>Eijkeren, J. C. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of seroconversion rates for infectious diseases: Effects of age and noise</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2020-09-20</date><risdate>2020</risdate><volume>39</volume><issue>21</issue><spage>2799</spage><epage>2814</epage><pages>2799-2814</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>The presence of serum antibodies is a biomarker of past infection. Instead of seroclassification aimed at measuring seroprevalence a population sample of serum antibody levels may be used to estimate the incidence of seroconversion. This article expands an earlier study into seroincidence estimation, employing models of the seroresponse that include probability of escaping infection, as well as nonexponential decay kinetics and different sources of noise. As previously, a constant force of infection is assumed. When the seroconversion rate is low, a substantial fraction of the population may not be old enough to have experienced any seroconversions, causing underestimation of seroconversion rates that may be substantial at young ages. A correction is given that can be shown to remove such age dependent bias. Simulation studies show that the updated models provide accurate estimates of seroconversion rates, but also that the presence of noise, when unaccounted for, may introduce considerable bias, especially at low (&lt; 0.1/yr) seroconversion rates and young ages. The revised serocalculator scripts can be used to update the R package “seroincidence.”</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32573813</pmid><doi>10.1002/sim.8578</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1904-6044</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2020-09, Vol.39 (21), p.2799-2814
issn 0277-6715
1097-0258
language eng
recordid cdi_proquest_miscellaneous_2416262178
source Wiley Online Library - AutoHoldings Journals
subjects biomarker dynamics
Infections
Noise
pertussis
Serology
title Estimation of seroconversion rates for infectious diseases: Effects of age and noise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T02%3A25%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20seroconversion%20rates%20for%20infectious%20diseases:%20Effects%20of%20age%20and%20noise&rft.jtitle=Statistics%20in%20medicine&rft.au=Teunis,%20P.%20F.%20M.&rft.date=2020-09-20&rft.volume=39&rft.issue=21&rft.spage=2799&rft.epage=2814&rft.pages=2799-2814&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.8578&rft_dat=%3Cproquest_cross%3E2430816430%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430816430&rft_id=info:pmid/32573813&rfr_iscdi=true