Rational and wide-range tuning of CNT aerogel conductors with multifunctionalities

Different from conventional conductors, elastic 3D nanoarchitectured conductors have shown promise in developing various flexible devices. However, rational design and control of their microstructures to achieve desired physicochemical properties is challenging and lacks comprehensive and profound i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2020-07, Vol.12 (25), p.13771-1378
Hauptverfasser: Li, Min, Gong, Qian, Cao, Pei, Wang, Han, Qiao, Jian, Yu, Yingying, Lu, Weibang, Di, Jiangtao, Zhang, Zuoguang, Zheng, Lianxi, Li, Qingwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1378
container_issue 25
container_start_page 13771
container_title Nanoscale
container_volume 12
creator Li, Min
Gong, Qian
Cao, Pei
Wang, Han
Qiao, Jian
Yu, Yingying
Lu, Weibang
Di, Jiangtao
Zhang, Zuoguang
Zheng, Lianxi
Li, Qingwen
description Different from conventional conductors, elastic 3D nanoarchitectured conductors have shown promise in developing various flexible devices. However, rational design and control of their microstructures to achieve desired physicochemical properties is challenging and lacks comprehensive and profound investigation. In this study, we report an interesting quantitative correlation between density and physical properties when highly porous CNT aerogels are densified, enabling a wide-range tuning of CNT 3D networked structures with different functions. Upon densification by compressing the original thickness of a CNT aerogel by 100 fold, a linear double-logarithmic structure-property relationship in terms of both thickness and density is witnessed, with the resultant density increased by a factor of 100 from 3 to 286 mg cm −3 , Young's modulus by 20 times (5.0-105 kPa), electrical conductivity by 400 times (0.4-163 s cm −1 ), and thermal conductivity by 140 times (0.048-6.7 W m −1 K −1 ). It can be thus inferred that the CNT aerogel can be regulated with desired mechanical, electrical and thermal properties in a quantitative manner over a wide range, making it promising as a multifunctional aerogel conductor. As a proof, two pieces of CNT aerogel conductors tailored with high conductivity and low thermal conductivity are employed to fabricate a flexible TE device using a simple all-carbon design, which yields a typical power density of 27.5 μW cm −2 and stable outputs under various deformations, demonstrating a potential strategy for design and fabrication of low-cost, flexible and portable power-generation devices. In the present study, the quantitative correlation between density and physical properties of highly porous CNT aerogels are systematically studied, enabling a wide-range tuning of CNT 3D networked structures with different functions.
doi_str_mv 10.1039/d0nr03564e
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2416262086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419720061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-a6c97ffc5a516a3eef0f19b936f83283b6890de43fc54535549cca9ec4e96add3</originalsourceid><addsrcrecordid>eNp90M1LwzAYBvAiCur04l2IeBGhmjZp1hxlzg8YE8Y8lyx5MzO6ZCYp4n9vXGWCB0_ve_jx8PBk2VmBbwpM-K3C1mNSMQp72VGJKc4JGZb7u5_Rw-w4hBXGjBNGjrLZTETjrGiRsAp9GAW5F3YJKHbW2CVyGo2mcyTAuyW0SDqrOhmdD8nGN7Tu2mh0Z2UfYqKBcJIdaNEGOP25g-z1YTwfPeWTl8fn0d0kl5TymAsm-VBrWYmqYIIAaKwLvki1dE3KmixYzbECShKhFakqyqUUHCQFzoRSZJBd9bkb7947CLFZmyChbYUF14WmpAUrWYlrlujlH7pynU-Ft4oPy7RHkdR1r6R3IXjQzcabtfCfTYGb73mbezydbecdJ3zRYx_kzv3O32yUTub8P0O-AEpugtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419720061</pqid></control><display><type>article</type><title>Rational and wide-range tuning of CNT aerogel conductors with multifunctionalities</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Li, Min ; Gong, Qian ; Cao, Pei ; Wang, Han ; Qiao, Jian ; Yu, Yingying ; Lu, Weibang ; Di, Jiangtao ; Zhang, Zuoguang ; Zheng, Lianxi ; Li, Qingwen</creator><creatorcontrib>Li, Min ; Gong, Qian ; Cao, Pei ; Wang, Han ; Qiao, Jian ; Yu, Yingying ; Lu, Weibang ; Di, Jiangtao ; Zhang, Zuoguang ; Zheng, Lianxi ; Li, Qingwen</creatorcontrib><description>Different from conventional conductors, elastic 3D nanoarchitectured conductors have shown promise in developing various flexible devices. However, rational design and control of their microstructures to achieve desired physicochemical properties is challenging and lacks comprehensive and profound investigation. In this study, we report an interesting quantitative correlation between density and physical properties when highly porous CNT aerogels are densified, enabling a wide-range tuning of CNT 3D networked structures with different functions. Upon densification by compressing the original thickness of a CNT aerogel by 100 fold, a linear double-logarithmic structure-property relationship in terms of both thickness and density is witnessed, with the resultant density increased by a factor of 100 from 3 to 286 mg cm −3 , Young's modulus by 20 times (5.0-105 kPa), electrical conductivity by 400 times (0.4-163 s cm −1 ), and thermal conductivity by 140 times (0.048-6.7 W m −1 K −1 ). It can be thus inferred that the CNT aerogel can be regulated with desired mechanical, electrical and thermal properties in a quantitative manner over a wide range, making it promising as a multifunctional aerogel conductor. As a proof, two pieces of CNT aerogel conductors tailored with high conductivity and low thermal conductivity are employed to fabricate a flexible TE device using a simple all-carbon design, which yields a typical power density of 27.5 μW cm −2 and stable outputs under various deformations, demonstrating a potential strategy for design and fabrication of low-cost, flexible and portable power-generation devices. In the present study, the quantitative correlation between density and physical properties of highly porous CNT aerogels are systematically studied, enabling a wide-range tuning of CNT 3D networked structures with different functions.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d0nr03564e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aerogels ; Conductors ; Correlation analysis ; Densification ; Electrical resistivity ; Heat conductivity ; Heat transfer ; Modulus of elasticity ; Physical properties ; Portable equipment ; Thermal conductivity ; Thermodynamic properties ; Thickness ; Tuning</subject><ispartof>Nanoscale, 2020-07, Vol.12 (25), p.13771-1378</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-a6c97ffc5a516a3eef0f19b936f83283b6890de43fc54535549cca9ec4e96add3</citedby><cites>FETCH-LOGICAL-c449t-a6c97ffc5a516a3eef0f19b936f83283b6890de43fc54535549cca9ec4e96add3</cites><orcidid>0000-0003-4974-365X ; 0000-0001-8081-786X ; 0000-0002-6364-2831 ; 0000-0002-5152-0765</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Gong, Qian</creatorcontrib><creatorcontrib>Cao, Pei</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Qiao, Jian</creatorcontrib><creatorcontrib>Yu, Yingying</creatorcontrib><creatorcontrib>Lu, Weibang</creatorcontrib><creatorcontrib>Di, Jiangtao</creatorcontrib><creatorcontrib>Zhang, Zuoguang</creatorcontrib><creatorcontrib>Zheng, Lianxi</creatorcontrib><creatorcontrib>Li, Qingwen</creatorcontrib><title>Rational and wide-range tuning of CNT aerogel conductors with multifunctionalities</title><title>Nanoscale</title><description>Different from conventional conductors, elastic 3D nanoarchitectured conductors have shown promise in developing various flexible devices. However, rational design and control of their microstructures to achieve desired physicochemical properties is challenging and lacks comprehensive and profound investigation. In this study, we report an interesting quantitative correlation between density and physical properties when highly porous CNT aerogels are densified, enabling a wide-range tuning of CNT 3D networked structures with different functions. Upon densification by compressing the original thickness of a CNT aerogel by 100 fold, a linear double-logarithmic structure-property relationship in terms of both thickness and density is witnessed, with the resultant density increased by a factor of 100 from 3 to 286 mg cm −3 , Young's modulus by 20 times (5.0-105 kPa), electrical conductivity by 400 times (0.4-163 s cm −1 ), and thermal conductivity by 140 times (0.048-6.7 W m −1 K −1 ). It can be thus inferred that the CNT aerogel can be regulated with desired mechanical, electrical and thermal properties in a quantitative manner over a wide range, making it promising as a multifunctional aerogel conductor. As a proof, two pieces of CNT aerogel conductors tailored with high conductivity and low thermal conductivity are employed to fabricate a flexible TE device using a simple all-carbon design, which yields a typical power density of 27.5 μW cm −2 and stable outputs under various deformations, demonstrating a potential strategy for design and fabrication of low-cost, flexible and portable power-generation devices. In the present study, the quantitative correlation between density and physical properties of highly porous CNT aerogels are systematically studied, enabling a wide-range tuning of CNT 3D networked structures with different functions.</description><subject>Aerogels</subject><subject>Conductors</subject><subject>Correlation analysis</subject><subject>Densification</subject><subject>Electrical resistivity</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Modulus of elasticity</subject><subject>Physical properties</subject><subject>Portable equipment</subject><subject>Thermal conductivity</subject><subject>Thermodynamic properties</subject><subject>Thickness</subject><subject>Tuning</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90M1LwzAYBvAiCur04l2IeBGhmjZp1hxlzg8YE8Y8lyx5MzO6ZCYp4n9vXGWCB0_ve_jx8PBk2VmBbwpM-K3C1mNSMQp72VGJKc4JGZb7u5_Rw-w4hBXGjBNGjrLZTETjrGiRsAp9GAW5F3YJKHbW2CVyGo2mcyTAuyW0SDqrOhmdD8nGN7Tu2mh0Z2UfYqKBcJIdaNEGOP25g-z1YTwfPeWTl8fn0d0kl5TymAsm-VBrWYmqYIIAaKwLvki1dE3KmixYzbECShKhFakqyqUUHCQFzoRSZJBd9bkb7947CLFZmyChbYUF14WmpAUrWYlrlujlH7pynU-Ft4oPy7RHkdR1r6R3IXjQzcabtfCfTYGb73mbezydbecdJ3zRYx_kzv3O32yUTub8P0O-AEpugtQ</recordid><startdate>20200702</startdate><enddate>20200702</enddate><creator>Li, Min</creator><creator>Gong, Qian</creator><creator>Cao, Pei</creator><creator>Wang, Han</creator><creator>Qiao, Jian</creator><creator>Yu, Yingying</creator><creator>Lu, Weibang</creator><creator>Di, Jiangtao</creator><creator>Zhang, Zuoguang</creator><creator>Zheng, Lianxi</creator><creator>Li, Qingwen</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4974-365X</orcidid><orcidid>https://orcid.org/0000-0001-8081-786X</orcidid><orcidid>https://orcid.org/0000-0002-6364-2831</orcidid><orcidid>https://orcid.org/0000-0002-5152-0765</orcidid></search><sort><creationdate>20200702</creationdate><title>Rational and wide-range tuning of CNT aerogel conductors with multifunctionalities</title><author>Li, Min ; Gong, Qian ; Cao, Pei ; Wang, Han ; Qiao, Jian ; Yu, Yingying ; Lu, Weibang ; Di, Jiangtao ; Zhang, Zuoguang ; Zheng, Lianxi ; Li, Qingwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-a6c97ffc5a516a3eef0f19b936f83283b6890de43fc54535549cca9ec4e96add3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerogels</topic><topic>Conductors</topic><topic>Correlation analysis</topic><topic>Densification</topic><topic>Electrical resistivity</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Modulus of elasticity</topic><topic>Physical properties</topic><topic>Portable equipment</topic><topic>Thermal conductivity</topic><topic>Thermodynamic properties</topic><topic>Thickness</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Gong, Qian</creatorcontrib><creatorcontrib>Cao, Pei</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Qiao, Jian</creatorcontrib><creatorcontrib>Yu, Yingying</creatorcontrib><creatorcontrib>Lu, Weibang</creatorcontrib><creatorcontrib>Di, Jiangtao</creatorcontrib><creatorcontrib>Zhang, Zuoguang</creatorcontrib><creatorcontrib>Zheng, Lianxi</creatorcontrib><creatorcontrib>Li, Qingwen</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Min</au><au>Gong, Qian</au><au>Cao, Pei</au><au>Wang, Han</au><au>Qiao, Jian</au><au>Yu, Yingying</au><au>Lu, Weibang</au><au>Di, Jiangtao</au><au>Zhang, Zuoguang</au><au>Zheng, Lianxi</au><au>Li, Qingwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational and wide-range tuning of CNT aerogel conductors with multifunctionalities</atitle><jtitle>Nanoscale</jtitle><date>2020-07-02</date><risdate>2020</risdate><volume>12</volume><issue>25</issue><spage>13771</spage><epage>1378</epage><pages>13771-1378</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Different from conventional conductors, elastic 3D nanoarchitectured conductors have shown promise in developing various flexible devices. However, rational design and control of their microstructures to achieve desired physicochemical properties is challenging and lacks comprehensive and profound investigation. In this study, we report an interesting quantitative correlation between density and physical properties when highly porous CNT aerogels are densified, enabling a wide-range tuning of CNT 3D networked structures with different functions. Upon densification by compressing the original thickness of a CNT aerogel by 100 fold, a linear double-logarithmic structure-property relationship in terms of both thickness and density is witnessed, with the resultant density increased by a factor of 100 from 3 to 286 mg cm −3 , Young's modulus by 20 times (5.0-105 kPa), electrical conductivity by 400 times (0.4-163 s cm −1 ), and thermal conductivity by 140 times (0.048-6.7 W m −1 K −1 ). It can be thus inferred that the CNT aerogel can be regulated with desired mechanical, electrical and thermal properties in a quantitative manner over a wide range, making it promising as a multifunctional aerogel conductor. As a proof, two pieces of CNT aerogel conductors tailored with high conductivity and low thermal conductivity are employed to fabricate a flexible TE device using a simple all-carbon design, which yields a typical power density of 27.5 μW cm −2 and stable outputs under various deformations, demonstrating a potential strategy for design and fabrication of low-cost, flexible and portable power-generation devices. In the present study, the quantitative correlation between density and physical properties of highly porous CNT aerogels are systematically studied, enabling a wide-range tuning of CNT 3D networked structures with different functions.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0nr03564e</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4974-365X</orcidid><orcidid>https://orcid.org/0000-0001-8081-786X</orcidid><orcidid>https://orcid.org/0000-0002-6364-2831</orcidid><orcidid>https://orcid.org/0000-0002-5152-0765</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2020-07, Vol.12 (25), p.13771-1378
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_2416262086
source Royal Society Of Chemistry Journals 2008-
subjects Aerogels
Conductors
Correlation analysis
Densification
Electrical resistivity
Heat conductivity
Heat transfer
Modulus of elasticity
Physical properties
Portable equipment
Thermal conductivity
Thermodynamic properties
Thickness
Tuning
title Rational and wide-range tuning of CNT aerogel conductors with multifunctionalities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A54%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20and%20wide-range%20tuning%20of%20CNT%20aerogel%20conductors%20with%20multifunctionalities&rft.jtitle=Nanoscale&rft.au=Li,%20Min&rft.date=2020-07-02&rft.volume=12&rft.issue=25&rft.spage=13771&rft.epage=1378&rft.pages=13771-1378&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d0nr03564e&rft_dat=%3Cproquest_cross%3E2419720061%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419720061&rft_id=info:pmid/&rfr_iscdi=true