Evolution of confined ice nano structures at different levels of pore filling: a synchrotron based X-ray diffraction study
We have thoroughly investigated the crystal structure of ice evolved from super cooled water confined in MCM-41 cylindrical nano pores through a synchrotron-based X-ray diffraction (XRD) technique for two different levels of pore filling. A rigorous analysis of XRD data shows that the nucleation dyn...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2020-07, Vol.22 (25), p.1439-14317 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14317 |
---|---|
container_issue | 25 |
container_start_page | 1439 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 22 |
creator | Thangswamy, Muthulakshmi Maheshwari, Priya Dutta, Dhanadeep Bera, A. K Singh, M. N Sinha, Anil K Yusuf, S. M Pujari, Pradeep K |
description | We have thoroughly investigated the crystal structure of ice evolved from super cooled water confined in MCM-41 cylindrical nano pores through a synchrotron-based X-ray diffraction (XRD) technique for two different levels of pore filling. A rigorous analysis of XRD data shows that the nucleation dynamics and the structure of nucleated ice highly depend on the level of pore filling. In the nearly fully hydrated pores, ice crystallites start nucleating inside the pores below 240 K and creep out of the pores to form bulk crystals having crystalline structure of a mixed phase of hexagonal and cubic forms. In the partially hydrated pores, on the other hand, ice crystals cannot creep out of the pore crossing the energy barrier. The crystalline ice particles remaining inside the cylindrical pore show a short range "cubic rich" structure. The "pure cubic" phase has not been identified at either of the pore fillings in these 2.5 nm average size pores. A large fraction of water inside the pores remains in the super cooled liquid phase even at 180 K. This observation is relevant for understanding the ice nucleation through the pore condensation and freezing mechanism, which is a major pathway for the formation of cirrus clouds in the upper atmosphere.
In fully hydrated MCM-41 cylindrical pore, core water after freezing creeps out of pore forming a mixture of hexagonal and cubic ice. Water near the pore wall in both fully and partially filled pores forms short range cubic-rich ice after freezing. |
doi_str_mv | 10.1039/d0cp01988g |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2415838167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2415838167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-3d15a4596d15ff056072123fa4f8c566623f80a6b36ed8a2e398b97b470036a43</originalsourceid><addsrcrecordid>eNp9kcFLwzAUxosoOKcX70LEiwjVpEnT1JvMOYWBHhS8lTRNZkeX1CQd1L_edJMJHjy97_D7vvd4XxSdIniNIM5vKihaiHLGFnvRCBGK4xwysr_TGT2MjpxbQghRivAo-pquTdP52mhgFBBGq1rLCtRCAs21Ac7bTvjOSge4B1WtlLRSe9DItWzc4GmNlUDVTVPrxS3gwPVafFjjbYgsuQth77Hl_cZrudiscr6r-uPoQPHGyZOfOY7eHqavk8d4_jx7mtzNY0FI5mNcoZSTNKdhKgVTCrMEJVhxophIKaVBM8hpiamsGE8kzlmZZyXJIMSUEzyOLre5rTWfnXS-WNVOyKbhWprOFQlBKcMM0SygF3_QpemsDtcNVHgfy_Mh8GpLCWucs1IVra1X3PYFgsVQQ3EPJy-bGmYBPt_C1okd91tT0VYqMGf_MfgbGwqQHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419078994</pqid></control><display><type>article</type><title>Evolution of confined ice nano structures at different levels of pore filling: a synchrotron based X-ray diffraction study</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Thangswamy, Muthulakshmi ; Maheshwari, Priya ; Dutta, Dhanadeep ; Bera, A. K ; Singh, M. N ; Sinha, Anil K ; Yusuf, S. M ; Pujari, Pradeep K</creator><creatorcontrib>Thangswamy, Muthulakshmi ; Maheshwari, Priya ; Dutta, Dhanadeep ; Bera, A. K ; Singh, M. N ; Sinha, Anil K ; Yusuf, S. M ; Pujari, Pradeep K</creatorcontrib><description>We have thoroughly investigated the crystal structure of ice evolved from super cooled water confined in MCM-41 cylindrical nano pores through a synchrotron-based X-ray diffraction (XRD) technique for two different levels of pore filling. A rigorous analysis of XRD data shows that the nucleation dynamics and the structure of nucleated ice highly depend on the level of pore filling. In the nearly fully hydrated pores, ice crystallites start nucleating inside the pores below 240 K and creep out of the pores to form bulk crystals having crystalline structure of a mixed phase of hexagonal and cubic forms. In the partially hydrated pores, on the other hand, ice crystals cannot creep out of the pore crossing the energy barrier. The crystalline ice particles remaining inside the cylindrical pore show a short range "cubic rich" structure. The "pure cubic" phase has not been identified at either of the pore fillings in these 2.5 nm average size pores. A large fraction of water inside the pores remains in the super cooled liquid phase even at 180 K. This observation is relevant for understanding the ice nucleation through the pore condensation and freezing mechanism, which is a major pathway for the formation of cirrus clouds in the upper atmosphere.
In fully hydrated MCM-41 cylindrical pore, core water after freezing creeps out of pore forming a mixture of hexagonal and cubic ice. Water near the pore wall in both fully and partially filled pores forms short range cubic-rich ice after freezing.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d0cp01988g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Cirrus clouds ; Cooling ; Crystal structure ; Crystallinity ; Crystallites ; Diffraction patterns ; Dynamic structural analysis ; Evolution ; Freezing ; Ice crystals ; Level (quantity) ; Liquid phases ; Nucleation ; Porosity ; Upper atmosphere ; X-ray diffraction</subject><ispartof>Physical chemistry chemical physics : PCCP, 2020-07, Vol.22 (25), p.1439-14317</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-3d15a4596d15ff056072123fa4f8c566623f80a6b36ed8a2e398b97b470036a43</citedby><cites>FETCH-LOGICAL-c447t-3d15a4596d15ff056072123fa4f8c566623f80a6b36ed8a2e398b97b470036a43</cites><orcidid>0000-0003-4233-1847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Thangswamy, Muthulakshmi</creatorcontrib><creatorcontrib>Maheshwari, Priya</creatorcontrib><creatorcontrib>Dutta, Dhanadeep</creatorcontrib><creatorcontrib>Bera, A. K</creatorcontrib><creatorcontrib>Singh, M. N</creatorcontrib><creatorcontrib>Sinha, Anil K</creatorcontrib><creatorcontrib>Yusuf, S. M</creatorcontrib><creatorcontrib>Pujari, Pradeep K</creatorcontrib><title>Evolution of confined ice nano structures at different levels of pore filling: a synchrotron based X-ray diffraction study</title><title>Physical chemistry chemical physics : PCCP</title><description>We have thoroughly investigated the crystal structure of ice evolved from super cooled water confined in MCM-41 cylindrical nano pores through a synchrotron-based X-ray diffraction (XRD) technique for two different levels of pore filling. A rigorous analysis of XRD data shows that the nucleation dynamics and the structure of nucleated ice highly depend on the level of pore filling. In the nearly fully hydrated pores, ice crystallites start nucleating inside the pores below 240 K and creep out of the pores to form bulk crystals having crystalline structure of a mixed phase of hexagonal and cubic forms. In the partially hydrated pores, on the other hand, ice crystals cannot creep out of the pore crossing the energy barrier. The crystalline ice particles remaining inside the cylindrical pore show a short range "cubic rich" structure. The "pure cubic" phase has not been identified at either of the pore fillings in these 2.5 nm average size pores. A large fraction of water inside the pores remains in the super cooled liquid phase even at 180 K. This observation is relevant for understanding the ice nucleation through the pore condensation and freezing mechanism, which is a major pathway for the formation of cirrus clouds in the upper atmosphere.
In fully hydrated MCM-41 cylindrical pore, core water after freezing creeps out of pore forming a mixture of hexagonal and cubic ice. Water near the pore wall in both fully and partially filled pores forms short range cubic-rich ice after freezing.</description><subject>Cirrus clouds</subject><subject>Cooling</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallites</subject><subject>Diffraction patterns</subject><subject>Dynamic structural analysis</subject><subject>Evolution</subject><subject>Freezing</subject><subject>Ice crystals</subject><subject>Level (quantity)</subject><subject>Liquid phases</subject><subject>Nucleation</subject><subject>Porosity</subject><subject>Upper atmosphere</subject><subject>X-ray diffraction</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kcFLwzAUxosoOKcX70LEiwjVpEnT1JvMOYWBHhS8lTRNZkeX1CQd1L_edJMJHjy97_D7vvd4XxSdIniNIM5vKihaiHLGFnvRCBGK4xwysr_TGT2MjpxbQghRivAo-pquTdP52mhgFBBGq1rLCtRCAs21Ac7bTvjOSge4B1WtlLRSe9DItWzc4GmNlUDVTVPrxS3gwPVafFjjbYgsuQth77Hl_cZrudiscr6r-uPoQPHGyZOfOY7eHqavk8d4_jx7mtzNY0FI5mNcoZSTNKdhKgVTCrMEJVhxophIKaVBM8hpiamsGE8kzlmZZyXJIMSUEzyOLre5rTWfnXS-WNVOyKbhWprOFQlBKcMM0SygF3_QpemsDtcNVHgfy_Mh8GpLCWucs1IVra1X3PYFgsVQQ3EPJy-bGmYBPt_C1okd91tT0VYqMGf_MfgbGwqQHg</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Thangswamy, Muthulakshmi</creator><creator>Maheshwari, Priya</creator><creator>Dutta, Dhanadeep</creator><creator>Bera, A. K</creator><creator>Singh, M. N</creator><creator>Sinha, Anil K</creator><creator>Yusuf, S. M</creator><creator>Pujari, Pradeep K</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4233-1847</orcidid></search><sort><creationdate>20200701</creationdate><title>Evolution of confined ice nano structures at different levels of pore filling: a synchrotron based X-ray diffraction study</title><author>Thangswamy, Muthulakshmi ; Maheshwari, Priya ; Dutta, Dhanadeep ; Bera, A. K ; Singh, M. N ; Sinha, Anil K ; Yusuf, S. M ; Pujari, Pradeep K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-3d15a4596d15ff056072123fa4f8c566623f80a6b36ed8a2e398b97b470036a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cirrus clouds</topic><topic>Cooling</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallites</topic><topic>Diffraction patterns</topic><topic>Dynamic structural analysis</topic><topic>Evolution</topic><topic>Freezing</topic><topic>Ice crystals</topic><topic>Level (quantity)</topic><topic>Liquid phases</topic><topic>Nucleation</topic><topic>Porosity</topic><topic>Upper atmosphere</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thangswamy, Muthulakshmi</creatorcontrib><creatorcontrib>Maheshwari, Priya</creatorcontrib><creatorcontrib>Dutta, Dhanadeep</creatorcontrib><creatorcontrib>Bera, A. K</creatorcontrib><creatorcontrib>Singh, M. N</creatorcontrib><creatorcontrib>Sinha, Anil K</creatorcontrib><creatorcontrib>Yusuf, S. M</creatorcontrib><creatorcontrib>Pujari, Pradeep K</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thangswamy, Muthulakshmi</au><au>Maheshwari, Priya</au><au>Dutta, Dhanadeep</au><au>Bera, A. K</au><au>Singh, M. N</au><au>Sinha, Anil K</au><au>Yusuf, S. M</au><au>Pujari, Pradeep K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of confined ice nano structures at different levels of pore filling: a synchrotron based X-ray diffraction study</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>22</volume><issue>25</issue><spage>1439</spage><epage>14317</epage><pages>1439-14317</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>We have thoroughly investigated the crystal structure of ice evolved from super cooled water confined in MCM-41 cylindrical nano pores through a synchrotron-based X-ray diffraction (XRD) technique for two different levels of pore filling. A rigorous analysis of XRD data shows that the nucleation dynamics and the structure of nucleated ice highly depend on the level of pore filling. In the nearly fully hydrated pores, ice crystallites start nucleating inside the pores below 240 K and creep out of the pores to form bulk crystals having crystalline structure of a mixed phase of hexagonal and cubic forms. In the partially hydrated pores, on the other hand, ice crystals cannot creep out of the pore crossing the energy barrier. The crystalline ice particles remaining inside the cylindrical pore show a short range "cubic rich" structure. The "pure cubic" phase has not been identified at either of the pore fillings in these 2.5 nm average size pores. A large fraction of water inside the pores remains in the super cooled liquid phase even at 180 K. This observation is relevant for understanding the ice nucleation through the pore condensation and freezing mechanism, which is a major pathway for the formation of cirrus clouds in the upper atmosphere.
In fully hydrated MCM-41 cylindrical pore, core water after freezing creeps out of pore forming a mixture of hexagonal and cubic ice. Water near the pore wall in both fully and partially filled pores forms short range cubic-rich ice after freezing.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0cp01988g</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4233-1847</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2020-07, Vol.22 (25), p.1439-14317 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_2415838167 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Cirrus clouds Cooling Crystal structure Crystallinity Crystallites Diffraction patterns Dynamic structural analysis Evolution Freezing Ice crystals Level (quantity) Liquid phases Nucleation Porosity Upper atmosphere X-ray diffraction |
title | Evolution of confined ice nano structures at different levels of pore filling: a synchrotron based X-ray diffraction study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A13%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20confined%20ice%20nano%20structures%20at%20different%20levels%20of%20pore%20filling:%20a%20synchrotron%20based%20X-ray%20diffraction%20study&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Thangswamy,%20Muthulakshmi&rft.date=2020-07-01&rft.volume=22&rft.issue=25&rft.spage=1439&rft.epage=14317&rft.pages=1439-14317&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d0cp01988g&rft_dat=%3Cproquest_cross%3E2415838167%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419078994&rft_id=info:pmid/&rfr_iscdi=true |