Evolution of confined ice nano structures at different levels of pore filling: a synchrotron based X-ray diffraction study

We have thoroughly investigated the crystal structure of ice evolved from super cooled water confined in MCM-41 cylindrical nano pores through a synchrotron-based X-ray diffraction (XRD) technique for two different levels of pore filling. A rigorous analysis of XRD data shows that the nucleation dyn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2020-07, Vol.22 (25), p.1439-14317
Hauptverfasser: Thangswamy, Muthulakshmi, Maheshwari, Priya, Dutta, Dhanadeep, Bera, A. K, Singh, M. N, Sinha, Anil K, Yusuf, S. M, Pujari, Pradeep K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14317
container_issue 25
container_start_page 1439
container_title Physical chemistry chemical physics : PCCP
container_volume 22
creator Thangswamy, Muthulakshmi
Maheshwari, Priya
Dutta, Dhanadeep
Bera, A. K
Singh, M. N
Sinha, Anil K
Yusuf, S. M
Pujari, Pradeep K
description We have thoroughly investigated the crystal structure of ice evolved from super cooled water confined in MCM-41 cylindrical nano pores through a synchrotron-based X-ray diffraction (XRD) technique for two different levels of pore filling. A rigorous analysis of XRD data shows that the nucleation dynamics and the structure of nucleated ice highly depend on the level of pore filling. In the nearly fully hydrated pores, ice crystallites start nucleating inside the pores below 240 K and creep out of the pores to form bulk crystals having crystalline structure of a mixed phase of hexagonal and cubic forms. In the partially hydrated pores, on the other hand, ice crystals cannot creep out of the pore crossing the energy barrier. The crystalline ice particles remaining inside the cylindrical pore show a short range "cubic rich" structure. The "pure cubic" phase has not been identified at either of the pore fillings in these 2.5 nm average size pores. A large fraction of water inside the pores remains in the super cooled liquid phase even at 180 K. This observation is relevant for understanding the ice nucleation through the pore condensation and freezing mechanism, which is a major pathway for the formation of cirrus clouds in the upper atmosphere. In fully hydrated MCM-41 cylindrical pore, core water after freezing creeps out of pore forming a mixture of hexagonal and cubic ice. Water near the pore wall in both fully and partially filled pores forms short range cubic-rich ice after freezing.
doi_str_mv 10.1039/d0cp01988g
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2415838167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2415838167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-3d15a4596d15ff056072123fa4f8c566623f80a6b36ed8a2e398b97b470036a43</originalsourceid><addsrcrecordid>eNp9kcFLwzAUxosoOKcX70LEiwjVpEnT1JvMOYWBHhS8lTRNZkeX1CQd1L_edJMJHjy97_D7vvd4XxSdIniNIM5vKihaiHLGFnvRCBGK4xwysr_TGT2MjpxbQghRivAo-pquTdP52mhgFBBGq1rLCtRCAs21Ac7bTvjOSge4B1WtlLRSe9DItWzc4GmNlUDVTVPrxS3gwPVafFjjbYgsuQth77Hl_cZrudiscr6r-uPoQPHGyZOfOY7eHqavk8d4_jx7mtzNY0FI5mNcoZSTNKdhKgVTCrMEJVhxophIKaVBM8hpiamsGE8kzlmZZyXJIMSUEzyOLre5rTWfnXS-WNVOyKbhWprOFQlBKcMM0SygF3_QpemsDtcNVHgfy_Mh8GpLCWucs1IVra1X3PYFgsVQQ3EPJy-bGmYBPt_C1okd91tT0VYqMGf_MfgbGwqQHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419078994</pqid></control><display><type>article</type><title>Evolution of confined ice nano structures at different levels of pore filling: a synchrotron based X-ray diffraction study</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Thangswamy, Muthulakshmi ; Maheshwari, Priya ; Dutta, Dhanadeep ; Bera, A. K ; Singh, M. N ; Sinha, Anil K ; Yusuf, S. M ; Pujari, Pradeep K</creator><creatorcontrib>Thangswamy, Muthulakshmi ; Maheshwari, Priya ; Dutta, Dhanadeep ; Bera, A. K ; Singh, M. N ; Sinha, Anil K ; Yusuf, S. M ; Pujari, Pradeep K</creatorcontrib><description>We have thoroughly investigated the crystal structure of ice evolved from super cooled water confined in MCM-41 cylindrical nano pores through a synchrotron-based X-ray diffraction (XRD) technique for two different levels of pore filling. A rigorous analysis of XRD data shows that the nucleation dynamics and the structure of nucleated ice highly depend on the level of pore filling. In the nearly fully hydrated pores, ice crystallites start nucleating inside the pores below 240 K and creep out of the pores to form bulk crystals having crystalline structure of a mixed phase of hexagonal and cubic forms. In the partially hydrated pores, on the other hand, ice crystals cannot creep out of the pore crossing the energy barrier. The crystalline ice particles remaining inside the cylindrical pore show a short range "cubic rich" structure. The "pure cubic" phase has not been identified at either of the pore fillings in these 2.5 nm average size pores. A large fraction of water inside the pores remains in the super cooled liquid phase even at 180 K. This observation is relevant for understanding the ice nucleation through the pore condensation and freezing mechanism, which is a major pathway for the formation of cirrus clouds in the upper atmosphere. In fully hydrated MCM-41 cylindrical pore, core water after freezing creeps out of pore forming a mixture of hexagonal and cubic ice. Water near the pore wall in both fully and partially filled pores forms short range cubic-rich ice after freezing.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d0cp01988g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Cirrus clouds ; Cooling ; Crystal structure ; Crystallinity ; Crystallites ; Diffraction patterns ; Dynamic structural analysis ; Evolution ; Freezing ; Ice crystals ; Level (quantity) ; Liquid phases ; Nucleation ; Porosity ; Upper atmosphere ; X-ray diffraction</subject><ispartof>Physical chemistry chemical physics : PCCP, 2020-07, Vol.22 (25), p.1439-14317</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-3d15a4596d15ff056072123fa4f8c566623f80a6b36ed8a2e398b97b470036a43</citedby><cites>FETCH-LOGICAL-c447t-3d15a4596d15ff056072123fa4f8c566623f80a6b36ed8a2e398b97b470036a43</cites><orcidid>0000-0003-4233-1847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Thangswamy, Muthulakshmi</creatorcontrib><creatorcontrib>Maheshwari, Priya</creatorcontrib><creatorcontrib>Dutta, Dhanadeep</creatorcontrib><creatorcontrib>Bera, A. K</creatorcontrib><creatorcontrib>Singh, M. N</creatorcontrib><creatorcontrib>Sinha, Anil K</creatorcontrib><creatorcontrib>Yusuf, S. M</creatorcontrib><creatorcontrib>Pujari, Pradeep K</creatorcontrib><title>Evolution of confined ice nano structures at different levels of pore filling: a synchrotron based X-ray diffraction study</title><title>Physical chemistry chemical physics : PCCP</title><description>We have thoroughly investigated the crystal structure of ice evolved from super cooled water confined in MCM-41 cylindrical nano pores through a synchrotron-based X-ray diffraction (XRD) technique for two different levels of pore filling. A rigorous analysis of XRD data shows that the nucleation dynamics and the structure of nucleated ice highly depend on the level of pore filling. In the nearly fully hydrated pores, ice crystallites start nucleating inside the pores below 240 K and creep out of the pores to form bulk crystals having crystalline structure of a mixed phase of hexagonal and cubic forms. In the partially hydrated pores, on the other hand, ice crystals cannot creep out of the pore crossing the energy barrier. The crystalline ice particles remaining inside the cylindrical pore show a short range "cubic rich" structure. The "pure cubic" phase has not been identified at either of the pore fillings in these 2.5 nm average size pores. A large fraction of water inside the pores remains in the super cooled liquid phase even at 180 K. This observation is relevant for understanding the ice nucleation through the pore condensation and freezing mechanism, which is a major pathway for the formation of cirrus clouds in the upper atmosphere. In fully hydrated MCM-41 cylindrical pore, core water after freezing creeps out of pore forming a mixture of hexagonal and cubic ice. Water near the pore wall in both fully and partially filled pores forms short range cubic-rich ice after freezing.</description><subject>Cirrus clouds</subject><subject>Cooling</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallites</subject><subject>Diffraction patterns</subject><subject>Dynamic structural analysis</subject><subject>Evolution</subject><subject>Freezing</subject><subject>Ice crystals</subject><subject>Level (quantity)</subject><subject>Liquid phases</subject><subject>Nucleation</subject><subject>Porosity</subject><subject>Upper atmosphere</subject><subject>X-ray diffraction</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kcFLwzAUxosoOKcX70LEiwjVpEnT1JvMOYWBHhS8lTRNZkeX1CQd1L_edJMJHjy97_D7vvd4XxSdIniNIM5vKihaiHLGFnvRCBGK4xwysr_TGT2MjpxbQghRivAo-pquTdP52mhgFBBGq1rLCtRCAs21Ac7bTvjOSge4B1WtlLRSe9DItWzc4GmNlUDVTVPrxS3gwPVafFjjbYgsuQth77Hl_cZrudiscr6r-uPoQPHGyZOfOY7eHqavk8d4_jx7mtzNY0FI5mNcoZSTNKdhKgVTCrMEJVhxophIKaVBM8hpiamsGE8kzlmZZyXJIMSUEzyOLre5rTWfnXS-WNVOyKbhWprOFQlBKcMM0SygF3_QpemsDtcNVHgfy_Mh8GpLCWucs1IVra1X3PYFgsVQQ3EPJy-bGmYBPt_C1okd91tT0VYqMGf_MfgbGwqQHg</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Thangswamy, Muthulakshmi</creator><creator>Maheshwari, Priya</creator><creator>Dutta, Dhanadeep</creator><creator>Bera, A. K</creator><creator>Singh, M. N</creator><creator>Sinha, Anil K</creator><creator>Yusuf, S. M</creator><creator>Pujari, Pradeep K</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4233-1847</orcidid></search><sort><creationdate>20200701</creationdate><title>Evolution of confined ice nano structures at different levels of pore filling: a synchrotron based X-ray diffraction study</title><author>Thangswamy, Muthulakshmi ; Maheshwari, Priya ; Dutta, Dhanadeep ; Bera, A. K ; Singh, M. N ; Sinha, Anil K ; Yusuf, S. M ; Pujari, Pradeep K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-3d15a4596d15ff056072123fa4f8c566623f80a6b36ed8a2e398b97b470036a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cirrus clouds</topic><topic>Cooling</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallites</topic><topic>Diffraction patterns</topic><topic>Dynamic structural analysis</topic><topic>Evolution</topic><topic>Freezing</topic><topic>Ice crystals</topic><topic>Level (quantity)</topic><topic>Liquid phases</topic><topic>Nucleation</topic><topic>Porosity</topic><topic>Upper atmosphere</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thangswamy, Muthulakshmi</creatorcontrib><creatorcontrib>Maheshwari, Priya</creatorcontrib><creatorcontrib>Dutta, Dhanadeep</creatorcontrib><creatorcontrib>Bera, A. K</creatorcontrib><creatorcontrib>Singh, M. N</creatorcontrib><creatorcontrib>Sinha, Anil K</creatorcontrib><creatorcontrib>Yusuf, S. M</creatorcontrib><creatorcontrib>Pujari, Pradeep K</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thangswamy, Muthulakshmi</au><au>Maheshwari, Priya</au><au>Dutta, Dhanadeep</au><au>Bera, A. K</au><au>Singh, M. N</au><au>Sinha, Anil K</au><au>Yusuf, S. M</au><au>Pujari, Pradeep K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of confined ice nano structures at different levels of pore filling: a synchrotron based X-ray diffraction study</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>22</volume><issue>25</issue><spage>1439</spage><epage>14317</epage><pages>1439-14317</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>We have thoroughly investigated the crystal structure of ice evolved from super cooled water confined in MCM-41 cylindrical nano pores through a synchrotron-based X-ray diffraction (XRD) technique for two different levels of pore filling. A rigorous analysis of XRD data shows that the nucleation dynamics and the structure of nucleated ice highly depend on the level of pore filling. In the nearly fully hydrated pores, ice crystallites start nucleating inside the pores below 240 K and creep out of the pores to form bulk crystals having crystalline structure of a mixed phase of hexagonal and cubic forms. In the partially hydrated pores, on the other hand, ice crystals cannot creep out of the pore crossing the energy barrier. The crystalline ice particles remaining inside the cylindrical pore show a short range "cubic rich" structure. The "pure cubic" phase has not been identified at either of the pore fillings in these 2.5 nm average size pores. A large fraction of water inside the pores remains in the super cooled liquid phase even at 180 K. This observation is relevant for understanding the ice nucleation through the pore condensation and freezing mechanism, which is a major pathway for the formation of cirrus clouds in the upper atmosphere. In fully hydrated MCM-41 cylindrical pore, core water after freezing creeps out of pore forming a mixture of hexagonal and cubic ice. Water near the pore wall in both fully and partially filled pores forms short range cubic-rich ice after freezing.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0cp01988g</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4233-1847</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2020-07, Vol.22 (25), p.1439-14317
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_2415838167
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Cirrus clouds
Cooling
Crystal structure
Crystallinity
Crystallites
Diffraction patterns
Dynamic structural analysis
Evolution
Freezing
Ice crystals
Level (quantity)
Liquid phases
Nucleation
Porosity
Upper atmosphere
X-ray diffraction
title Evolution of confined ice nano structures at different levels of pore filling: a synchrotron based X-ray diffraction study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A13%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20confined%20ice%20nano%20structures%20at%20different%20levels%20of%20pore%20filling:%20a%20synchrotron%20based%20X-ray%20diffraction%20study&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Thangswamy,%20Muthulakshmi&rft.date=2020-07-01&rft.volume=22&rft.issue=25&rft.spage=1439&rft.epage=14317&rft.pages=1439-14317&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d0cp01988g&rft_dat=%3Cproquest_cross%3E2415838167%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419078994&rft_id=info:pmid/&rfr_iscdi=true