Parametric mode regression for bounded responses
We propose new parametric frameworks of regression analysis with the conditional mode of a bounded response as the focal point of interest. Covariate effects estimation and prediction based on the maximum likelihood method under two new classes of regression models are demonstrated. We also develop...
Gespeichert in:
Veröffentlicht in: | Biometrical journal 2020-11, Vol.62 (7), p.1791-1809 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1809 |
---|---|
container_issue | 7 |
container_start_page | 1791 |
container_title | Biometrical journal |
container_volume | 62 |
creator | Zhou, Haiming Huang, Xianzheng |
description | We propose new parametric frameworks of regression analysis with the conditional mode of a bounded response as the focal point of interest. Covariate effects estimation and prediction based on the maximum likelihood method under two new classes of regression models are demonstrated. We also develop graphical and numerical diagnostic tools to detect various sources of model misspecification. Predictions based on different central tendency measures inferred using various regression models are compared using synthetic data in simulations. Finally, we conduct regression analysis for data from the Alzheimer's Disease Neuroimaging Initiative to demonstrate practical implementation of the proposed methods. Supporting Information that contain technical details and additional simulation and data analysis results are available online. |
doi_str_mv | 10.1002/bimj.202000039 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2415837041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2415837041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3682-c149a541e29ef22d9b2938dc45e51eaa587f534490c51e77967c26d50247ed4b3</originalsourceid><addsrcrecordid>eNqF0c1PwyAYBnBiNG5Orx5NEy9eOvks5aiLHzMzetAzofDWdGnLBBuz_16WzR28yIVAfjyBB4TOCZ4SjOl11XTLKcUUp8HUARoTQUnOMSsO0RgzynJWcjlCJzEuE1GY02M0YlQUkrBijPCrCaaDr9DYrPMOsgAfAWJsfJ_VPmSVH3oHLm3Hle8jxFN0VJs2wtlunqD3-7u32WO-eHmYz24WuWVFSXNLuDKCE6AKakqdqqhipbNcgCBgjChlLRjnCtu0llIV0tLCCUy5BMcrNkFX29xV8J8DxC_dNdFC25oe_BA15USUTGJOEr38Q5d-CH26XVLpoSXDrExqulU2-BgD1HoVms6EtSZYb7rUmy71vst04GIXO1QduD3_LS8BvgXfTQvrf-L07fz5iabfYT8E1Hz0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456783038</pqid></control><display><type>article</type><title>Parametric mode regression for bounded responses</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhou, Haiming ; Huang, Xianzheng</creator><creatorcontrib>Zhou, Haiming ; Huang, Xianzheng ; Alzheimer's Disease Neuroimaging Initiative ; for the Alzheimer's Disease Neuroimaging Initiative</creatorcontrib><description>We propose new parametric frameworks of regression analysis with the conditional mode of a bounded response as the focal point of interest. Covariate effects estimation and prediction based on the maximum likelihood method under two new classes of regression models are demonstrated. We also develop graphical and numerical diagnostic tools to detect various sources of model misspecification. Predictions based on different central tendency measures inferred using various regression models are compared using synthetic data in simulations. Finally, we conduct regression analysis for data from the Alzheimer's Disease Neuroimaging Initiative to demonstrate practical implementation of the proposed methods. Supporting Information that contain technical details and additional simulation and data analysis results are available online.</description><identifier>ISSN: 0323-3847</identifier><identifier>EISSN: 1521-4036</identifier><identifier>DOI: 10.1002/bimj.202000039</identifier><identifier>PMID: 32567136</identifier><language>eng</language><publisher>Germany: Wiley - VCH Verlag GmbH & Co. KGaA</publisher><subject>Alzheimer's disease ; beta distribution ; Data analysis ; Diagnostic software ; Diagnostic systems ; generalized biparabolic distribution ; linear predictor ; link function ; maximum likelihood ; Maximum likelihood method ; Medical imaging ; Neurodegenerative diseases ; Neuroimaging ; Regression analysis ; Regression models</subject><ispartof>Biometrical journal, 2020-11, Vol.62 (7), p.1791-1809</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3682-c149a541e29ef22d9b2938dc45e51eaa587f534490c51e77967c26d50247ed4b3</citedby><cites>FETCH-LOGICAL-c3682-c149a541e29ef22d9b2938dc45e51eaa587f534490c51e77967c26d50247ed4b3</cites><orcidid>0000-0002-2777-5354</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbimj.202000039$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbimj.202000039$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27915,27916,45565,45566</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32567136$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Haiming</creatorcontrib><creatorcontrib>Huang, Xianzheng</creatorcontrib><creatorcontrib>Alzheimer's Disease Neuroimaging Initiative</creatorcontrib><creatorcontrib>for the Alzheimer's Disease Neuroimaging Initiative</creatorcontrib><title>Parametric mode regression for bounded responses</title><title>Biometrical journal</title><addtitle>Biom J</addtitle><description>We propose new parametric frameworks of regression analysis with the conditional mode of a bounded response as the focal point of interest. Covariate effects estimation and prediction based on the maximum likelihood method under two new classes of regression models are demonstrated. We also develop graphical and numerical diagnostic tools to detect various sources of model misspecification. Predictions based on different central tendency measures inferred using various regression models are compared using synthetic data in simulations. Finally, we conduct regression analysis for data from the Alzheimer's Disease Neuroimaging Initiative to demonstrate practical implementation of the proposed methods. Supporting Information that contain technical details and additional simulation and data analysis results are available online.</description><subject>Alzheimer's disease</subject><subject>beta distribution</subject><subject>Data analysis</subject><subject>Diagnostic software</subject><subject>Diagnostic systems</subject><subject>generalized biparabolic distribution</subject><subject>linear predictor</subject><subject>link function</subject><subject>maximum likelihood</subject><subject>Maximum likelihood method</subject><subject>Medical imaging</subject><subject>Neurodegenerative diseases</subject><subject>Neuroimaging</subject><subject>Regression analysis</subject><subject>Regression models</subject><issn>0323-3847</issn><issn>1521-4036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqF0c1PwyAYBnBiNG5Orx5NEy9eOvks5aiLHzMzetAzofDWdGnLBBuz_16WzR28yIVAfjyBB4TOCZ4SjOl11XTLKcUUp8HUARoTQUnOMSsO0RgzynJWcjlCJzEuE1GY02M0YlQUkrBijPCrCaaDr9DYrPMOsgAfAWJsfJ_VPmSVH3oHLm3Hle8jxFN0VJs2wtlunqD3-7u32WO-eHmYz24WuWVFSXNLuDKCE6AKakqdqqhipbNcgCBgjChlLRjnCtu0llIV0tLCCUy5BMcrNkFX29xV8J8DxC_dNdFC25oe_BA15USUTGJOEr38Q5d-CH26XVLpoSXDrExqulU2-BgD1HoVms6EtSZYb7rUmy71vst04GIXO1QduD3_LS8BvgXfTQvrf-L07fz5iabfYT8E1Hz0</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Zhou, Haiming</creator><creator>Huang, Xianzheng</creator><general>Wiley - VCH Verlag GmbH & Co. KGaA</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2777-5354</orcidid></search><sort><creationdate>202011</creationdate><title>Parametric mode regression for bounded responses</title><author>Zhou, Haiming ; Huang, Xianzheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3682-c149a541e29ef22d9b2938dc45e51eaa587f534490c51e77967c26d50247ed4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alzheimer's disease</topic><topic>beta distribution</topic><topic>Data analysis</topic><topic>Diagnostic software</topic><topic>Diagnostic systems</topic><topic>generalized biparabolic distribution</topic><topic>linear predictor</topic><topic>link function</topic><topic>maximum likelihood</topic><topic>Maximum likelihood method</topic><topic>Medical imaging</topic><topic>Neurodegenerative diseases</topic><topic>Neuroimaging</topic><topic>Regression analysis</topic><topic>Regression models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Haiming</creatorcontrib><creatorcontrib>Huang, Xianzheng</creatorcontrib><creatorcontrib>Alzheimer's Disease Neuroimaging Initiative</creatorcontrib><creatorcontrib>for the Alzheimer's Disease Neuroimaging Initiative</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Haiming</au><au>Huang, Xianzheng</au><aucorp>Alzheimer's Disease Neuroimaging Initiative</aucorp><aucorp>for the Alzheimer's Disease Neuroimaging Initiative</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parametric mode regression for bounded responses</atitle><jtitle>Biometrical journal</jtitle><addtitle>Biom J</addtitle><date>2020-11</date><risdate>2020</risdate><volume>62</volume><issue>7</issue><spage>1791</spage><epage>1809</epage><pages>1791-1809</pages><issn>0323-3847</issn><eissn>1521-4036</eissn><abstract>We propose new parametric frameworks of regression analysis with the conditional mode of a bounded response as the focal point of interest. Covariate effects estimation and prediction based on the maximum likelihood method under two new classes of regression models are demonstrated. We also develop graphical and numerical diagnostic tools to detect various sources of model misspecification. Predictions based on different central tendency measures inferred using various regression models are compared using synthetic data in simulations. Finally, we conduct regression analysis for data from the Alzheimer's Disease Neuroimaging Initiative to demonstrate practical implementation of the proposed methods. Supporting Information that contain technical details and additional simulation and data analysis results are available online.</abstract><cop>Germany</cop><pub>Wiley - VCH Verlag GmbH & Co. KGaA</pub><pmid>32567136</pmid><doi>10.1002/bimj.202000039</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-2777-5354</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0323-3847 |
ispartof | Biometrical journal, 2020-11, Vol.62 (7), p.1791-1809 |
issn | 0323-3847 1521-4036 |
language | eng |
recordid | cdi_proquest_miscellaneous_2415837041 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Alzheimer's disease beta distribution Data analysis Diagnostic software Diagnostic systems generalized biparabolic distribution linear predictor link function maximum likelihood Maximum likelihood method Medical imaging Neurodegenerative diseases Neuroimaging Regression analysis Regression models |
title | Parametric mode regression for bounded responses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T03%3A11%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parametric%20mode%20regression%20for%20bounded%20responses&rft.jtitle=Biometrical%20journal&rft.au=Zhou,%20Haiming&rft.aucorp=Alzheimer's%20Disease%20Neuroimaging%20Initiative&rft.date=2020-11&rft.volume=62&rft.issue=7&rft.spage=1791&rft.epage=1809&rft.pages=1791-1809&rft.issn=0323-3847&rft.eissn=1521-4036&rft_id=info:doi/10.1002/bimj.202000039&rft_dat=%3Cproquest_cross%3E2415837041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2456783038&rft_id=info:pmid/32567136&rfr_iscdi=true |