Parametric mode regression for bounded responses

We propose new parametric frameworks of regression analysis with the conditional mode of a bounded response as the focal point of interest. Covariate effects estimation and prediction based on the maximum likelihood method under two new classes of regression models are demonstrated. We also develop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrical journal 2020-11, Vol.62 (7), p.1791-1809
Hauptverfasser: Zhou, Haiming, Huang, Xianzheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1809
container_issue 7
container_start_page 1791
container_title Biometrical journal
container_volume 62
creator Zhou, Haiming
Huang, Xianzheng
description We propose new parametric frameworks of regression analysis with the conditional mode of a bounded response as the focal point of interest. Covariate effects estimation and prediction based on the maximum likelihood method under two new classes of regression models are demonstrated. We also develop graphical and numerical diagnostic tools to detect various sources of model misspecification. Predictions based on different central tendency measures inferred using various regression models are compared using synthetic data in simulations. Finally, we conduct regression analysis for data from the Alzheimer's Disease Neuroimaging Initiative to demonstrate practical implementation of the proposed methods. Supporting Information that contain technical details and additional simulation and data analysis results are available online.
doi_str_mv 10.1002/bimj.202000039
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2415837041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2415837041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3682-c149a541e29ef22d9b2938dc45e51eaa587f534490c51e77967c26d50247ed4b3</originalsourceid><addsrcrecordid>eNqF0c1PwyAYBnBiNG5Orx5NEy9eOvks5aiLHzMzetAzofDWdGnLBBuz_16WzR28yIVAfjyBB4TOCZ4SjOl11XTLKcUUp8HUARoTQUnOMSsO0RgzynJWcjlCJzEuE1GY02M0YlQUkrBijPCrCaaDr9DYrPMOsgAfAWJsfJ_VPmSVH3oHLm3Hle8jxFN0VJs2wtlunqD3-7u32WO-eHmYz24WuWVFSXNLuDKCE6AKakqdqqhipbNcgCBgjChlLRjnCtu0llIV0tLCCUy5BMcrNkFX29xV8J8DxC_dNdFC25oe_BA15USUTGJOEr38Q5d-CH26XVLpoSXDrExqulU2-BgD1HoVms6EtSZYb7rUmy71vst04GIXO1QduD3_LS8BvgXfTQvrf-L07fz5iabfYT8E1Hz0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456783038</pqid></control><display><type>article</type><title>Parametric mode regression for bounded responses</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhou, Haiming ; Huang, Xianzheng</creator><creatorcontrib>Zhou, Haiming ; Huang, Xianzheng ; Alzheimer's Disease Neuroimaging Initiative ; for the Alzheimer's Disease Neuroimaging Initiative</creatorcontrib><description>We propose new parametric frameworks of regression analysis with the conditional mode of a bounded response as the focal point of interest. Covariate effects estimation and prediction based on the maximum likelihood method under two new classes of regression models are demonstrated. We also develop graphical and numerical diagnostic tools to detect various sources of model misspecification. Predictions based on different central tendency measures inferred using various regression models are compared using synthetic data in simulations. Finally, we conduct regression analysis for data from the Alzheimer's Disease Neuroimaging Initiative to demonstrate practical implementation of the proposed methods. Supporting Information that contain technical details and additional simulation and data analysis results are available online.</description><identifier>ISSN: 0323-3847</identifier><identifier>EISSN: 1521-4036</identifier><identifier>DOI: 10.1002/bimj.202000039</identifier><identifier>PMID: 32567136</identifier><language>eng</language><publisher>Germany: Wiley - VCH Verlag GmbH &amp; Co. KGaA</publisher><subject>Alzheimer's disease ; beta distribution ; Data analysis ; Diagnostic software ; Diagnostic systems ; generalized biparabolic distribution ; linear predictor ; link function ; maximum likelihood ; Maximum likelihood method ; Medical imaging ; Neurodegenerative diseases ; Neuroimaging ; Regression analysis ; Regression models</subject><ispartof>Biometrical journal, 2020-11, Vol.62 (7), p.1791-1809</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3682-c149a541e29ef22d9b2938dc45e51eaa587f534490c51e77967c26d50247ed4b3</citedby><cites>FETCH-LOGICAL-c3682-c149a541e29ef22d9b2938dc45e51eaa587f534490c51e77967c26d50247ed4b3</cites><orcidid>0000-0002-2777-5354</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbimj.202000039$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbimj.202000039$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27915,27916,45565,45566</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32567136$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Haiming</creatorcontrib><creatorcontrib>Huang, Xianzheng</creatorcontrib><creatorcontrib>Alzheimer's Disease Neuroimaging Initiative</creatorcontrib><creatorcontrib>for the Alzheimer's Disease Neuroimaging Initiative</creatorcontrib><title>Parametric mode regression for bounded responses</title><title>Biometrical journal</title><addtitle>Biom J</addtitle><description>We propose new parametric frameworks of regression analysis with the conditional mode of a bounded response as the focal point of interest. Covariate effects estimation and prediction based on the maximum likelihood method under two new classes of regression models are demonstrated. We also develop graphical and numerical diagnostic tools to detect various sources of model misspecification. Predictions based on different central tendency measures inferred using various regression models are compared using synthetic data in simulations. Finally, we conduct regression analysis for data from the Alzheimer's Disease Neuroimaging Initiative to demonstrate practical implementation of the proposed methods. Supporting Information that contain technical details and additional simulation and data analysis results are available online.</description><subject>Alzheimer's disease</subject><subject>beta distribution</subject><subject>Data analysis</subject><subject>Diagnostic software</subject><subject>Diagnostic systems</subject><subject>generalized biparabolic distribution</subject><subject>linear predictor</subject><subject>link function</subject><subject>maximum likelihood</subject><subject>Maximum likelihood method</subject><subject>Medical imaging</subject><subject>Neurodegenerative diseases</subject><subject>Neuroimaging</subject><subject>Regression analysis</subject><subject>Regression models</subject><issn>0323-3847</issn><issn>1521-4036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqF0c1PwyAYBnBiNG5Orx5NEy9eOvks5aiLHzMzetAzofDWdGnLBBuz_16WzR28yIVAfjyBB4TOCZ4SjOl11XTLKcUUp8HUARoTQUnOMSsO0RgzynJWcjlCJzEuE1GY02M0YlQUkrBijPCrCaaDr9DYrPMOsgAfAWJsfJ_VPmSVH3oHLm3Hle8jxFN0VJs2wtlunqD3-7u32WO-eHmYz24WuWVFSXNLuDKCE6AKakqdqqhipbNcgCBgjChlLRjnCtu0llIV0tLCCUy5BMcrNkFX29xV8J8DxC_dNdFC25oe_BA15USUTGJOEr38Q5d-CH26XVLpoSXDrExqulU2-BgD1HoVms6EtSZYb7rUmy71vst04GIXO1QduD3_LS8BvgXfTQvrf-L07fz5iabfYT8E1Hz0</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Zhou, Haiming</creator><creator>Huang, Xianzheng</creator><general>Wiley - VCH Verlag GmbH &amp; Co. KGaA</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2777-5354</orcidid></search><sort><creationdate>202011</creationdate><title>Parametric mode regression for bounded responses</title><author>Zhou, Haiming ; Huang, Xianzheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3682-c149a541e29ef22d9b2938dc45e51eaa587f534490c51e77967c26d50247ed4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alzheimer's disease</topic><topic>beta distribution</topic><topic>Data analysis</topic><topic>Diagnostic software</topic><topic>Diagnostic systems</topic><topic>generalized biparabolic distribution</topic><topic>linear predictor</topic><topic>link function</topic><topic>maximum likelihood</topic><topic>Maximum likelihood method</topic><topic>Medical imaging</topic><topic>Neurodegenerative diseases</topic><topic>Neuroimaging</topic><topic>Regression analysis</topic><topic>Regression models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Haiming</creatorcontrib><creatorcontrib>Huang, Xianzheng</creatorcontrib><creatorcontrib>Alzheimer's Disease Neuroimaging Initiative</creatorcontrib><creatorcontrib>for the Alzheimer's Disease Neuroimaging Initiative</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Haiming</au><au>Huang, Xianzheng</au><aucorp>Alzheimer's Disease Neuroimaging Initiative</aucorp><aucorp>for the Alzheimer's Disease Neuroimaging Initiative</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parametric mode regression for bounded responses</atitle><jtitle>Biometrical journal</jtitle><addtitle>Biom J</addtitle><date>2020-11</date><risdate>2020</risdate><volume>62</volume><issue>7</issue><spage>1791</spage><epage>1809</epage><pages>1791-1809</pages><issn>0323-3847</issn><eissn>1521-4036</eissn><abstract>We propose new parametric frameworks of regression analysis with the conditional mode of a bounded response as the focal point of interest. Covariate effects estimation and prediction based on the maximum likelihood method under two new classes of regression models are demonstrated. We also develop graphical and numerical diagnostic tools to detect various sources of model misspecification. Predictions based on different central tendency measures inferred using various regression models are compared using synthetic data in simulations. Finally, we conduct regression analysis for data from the Alzheimer's Disease Neuroimaging Initiative to demonstrate practical implementation of the proposed methods. Supporting Information that contain technical details and additional simulation and data analysis results are available online.</abstract><cop>Germany</cop><pub>Wiley - VCH Verlag GmbH &amp; Co. KGaA</pub><pmid>32567136</pmid><doi>10.1002/bimj.202000039</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-2777-5354</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0323-3847
ispartof Biometrical journal, 2020-11, Vol.62 (7), p.1791-1809
issn 0323-3847
1521-4036
language eng
recordid cdi_proquest_miscellaneous_2415837041
source Wiley Online Library Journals Frontfile Complete
subjects Alzheimer's disease
beta distribution
Data analysis
Diagnostic software
Diagnostic systems
generalized biparabolic distribution
linear predictor
link function
maximum likelihood
Maximum likelihood method
Medical imaging
Neurodegenerative diseases
Neuroimaging
Regression analysis
Regression models
title Parametric mode regression for bounded responses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T03%3A11%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parametric%20mode%20regression%20for%20bounded%20responses&rft.jtitle=Biometrical%20journal&rft.au=Zhou,%20Haiming&rft.aucorp=Alzheimer's%20Disease%20Neuroimaging%20Initiative&rft.date=2020-11&rft.volume=62&rft.issue=7&rft.spage=1791&rft.epage=1809&rft.pages=1791-1809&rft.issn=0323-3847&rft.eissn=1521-4036&rft_id=info:doi/10.1002/bimj.202000039&rft_dat=%3Cproquest_cross%3E2415837041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2456783038&rft_id=info:pmid/32567136&rfr_iscdi=true