Hierarchically structured diamond composite with exceptional toughness

The well known trade-off between hardness and toughness (resistance to fracture) makes simultaneous improvement of both properties challenging, especially in diamond. The hardness of diamond can be increased through nanostructuring strategies 1 , 2 , among which the formation of high-density nanosca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2020-06, Vol.582 (7812), p.370-374
Hauptverfasser: Yue, Yonghai, Gao, Yufei, Hu, Wentao, Xu, Bo, Wang, Jing, Zhang, Xuejiao, Zhang, Qi, Wang, Yanbin, Ge, Binghui, Yang, Zhenyu, Li, Zihe, Ying, Pan, Liu, Xiaoxiao, Yu, Dongli, Wei, Bin, Wang, Zhongchang, Zhou, Xiang-Feng, Guo, Lin, Tian, Yongjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 374
container_issue 7812
container_start_page 370
container_title Nature (London)
container_volume 582
creator Yue, Yonghai
Gao, Yufei
Hu, Wentao
Xu, Bo
Wang, Jing
Zhang, Xuejiao
Zhang, Qi
Wang, Yanbin
Ge, Binghui
Yang, Zhenyu
Li, Zihe
Ying, Pan
Liu, Xiaoxiao
Yu, Dongli
Wei, Bin
Wang, Zhongchang
Zhou, Xiang-Feng
Guo, Lin
Tian, Yongjun
description The well known trade-off between hardness and toughness (resistance to fracture) makes simultaneous improvement of both properties challenging, especially in diamond. The hardness of diamond can be increased through nanostructuring strategies 1 , 2 , among which the formation of high-density nanoscale twins — crystalline regions related by symmetry — also toughens diamond 2 . In materials other than diamond, there are several other promising approaches to enhancing toughness in addition to nanotwinning 3 , such as bio-inspired laminated composite toughening 4 – 7 , transformation toughening 8 and dual-phase toughening 9 , but there has been little research into such approaches in diamond. Here we report the structural characterization of a diamond composite hierarchically assembled with coherently interfaced diamond polytypes (different stacking sequences), interwoven nanotwins and interlocked nanograins. The architecture of the composite enhances toughness more than nanotwinning alone, without sacrificing hardness. Single-edge notched beam tests yield a toughness up to five times that of synthetic diamond 10 , even greater than that of magnesium alloys. When fracture occurs, a crack propagates through diamond nanotwins of the 3C (cubic) polytype along {111} planes, via a zigzag path. As the crack encounters regions of non-3C polytypes, its propagation is diffused into sinuous fractures, with local transformation into 3C diamond near the fracture surfaces. Both processes dissipate strain energy, thereby enhancing toughness. This work could prove useful in making superhard materials and engineering ceramics. By using structural architecture with synergetic effects of hardening and toughening, the trade-off between hardness and toughness may eventually be surmounted. A diamond composite with a hierarchical microstructure possesses a combination of hardness and toughness surpassing that of all known materials.
doi_str_mv 10.1038/s41586-020-2361-2
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2415300208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A626945305</galeid><sourcerecordid>A626945305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c574t-be122c491ac17316035dfecb1b1852ea51cd76c8128478b95065ff5341df279b3</originalsourceid><addsrcrecordid>eNp10u9r1DAYB_Agirud_gG-keLeTKQzv9u-PA7nBkNBJ74Mafq0l9E2XZLi9t-b46bz5EaggfaTL3mePgi9IfiMYFZ-DJyIUuaY4pwySXL6DC0IL2TOZVk8RwuMaZnjkskjdBzCDcZYkIK_REeMCiF4hRfo_MKC195srNF9f5-F6GcTZw9N1lg9uLHJjBsmF2yE7JeNmwzuDEzRulH3WXRztxkhhFfoRav7AK8f9iX6cf7pen2RX339fLleXeVGFDzmNRBKDa-INqRgRGImmhZMTWpSCgpaENMU0pSElrwo60pgKdpWME6alhZVzZbodJc7eXc7Q4hqsMFA3-sR3BwUTR1hqexU9BKd_Edv3OzTrZOSopKlkBV7VJ3uQdmxddFrsw1VK0llxVOcSCo_oDoYU-96N0Jr0-s9_-6AN5O9Vf-iswMorQYGaw6mvt87kEyEu9jpOQR1-f3bvv3wtF1d_1x_2ddkp413IXho1eTtoP29IlhtR03tRk2lzqrtqKXHEr196O9cD9D8PfFnthKgOxDSp7ED__gDnk79DUay2MA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659685693</pqid></control><display><type>article</type><title>Hierarchically structured diamond composite with exceptional toughness</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Yue, Yonghai ; Gao, Yufei ; Hu, Wentao ; Xu, Bo ; Wang, Jing ; Zhang, Xuejiao ; Zhang, Qi ; Wang, Yanbin ; Ge, Binghui ; Yang, Zhenyu ; Li, Zihe ; Ying, Pan ; Liu, Xiaoxiao ; Yu, Dongli ; Wei, Bin ; Wang, Zhongchang ; Zhou, Xiang-Feng ; Guo, Lin ; Tian, Yongjun</creator><creatorcontrib>Yue, Yonghai ; Gao, Yufei ; Hu, Wentao ; Xu, Bo ; Wang, Jing ; Zhang, Xuejiao ; Zhang, Qi ; Wang, Yanbin ; Ge, Binghui ; Yang, Zhenyu ; Li, Zihe ; Ying, Pan ; Liu, Xiaoxiao ; Yu, Dongli ; Wei, Bin ; Wang, Zhongchang ; Zhou, Xiang-Feng ; Guo, Lin ; Tian, Yongjun</creatorcontrib><description>The well known trade-off between hardness and toughness (resistance to fracture) makes simultaneous improvement of both properties challenging, especially in diamond. The hardness of diamond can be increased through nanostructuring strategies 1 , 2 , among which the formation of high-density nanoscale twins — crystalline regions related by symmetry — also toughens diamond 2 . In materials other than diamond, there are several other promising approaches to enhancing toughness in addition to nanotwinning 3 , such as bio-inspired laminated composite toughening 4 – 7 , transformation toughening 8 and dual-phase toughening 9 , but there has been little research into such approaches in diamond. Here we report the structural characterization of a diamond composite hierarchically assembled with coherently interfaced diamond polytypes (different stacking sequences), interwoven nanotwins and interlocked nanograins. The architecture of the composite enhances toughness more than nanotwinning alone, without sacrificing hardness. Single-edge notched beam tests yield a toughness up to five times that of synthetic diamond 10 , even greater than that of magnesium alloys. When fracture occurs, a crack propagates through diamond nanotwins of the 3C (cubic) polytype along {111} planes, via a zigzag path. As the crack encounters regions of non-3C polytypes, its propagation is diffused into sinuous fractures, with local transformation into 3C diamond near the fracture surfaces. Both processes dissipate strain energy, thereby enhancing toughness. This work could prove useful in making superhard materials and engineering ceramics. By using structural architecture with synergetic effects of hardening and toughening, the trade-off between hardness and toughness may eventually be surmounted. A diamond composite with a hierarchical microstructure possesses a combination of hardness and toughness surpassing that of all known materials.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-020-2361-2</identifier><identifier>PMID: 32555490</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1023 ; 639/301/357 ; Artificial diamonds ; Carbon ; Composition ; Crack propagation ; Diamonds ; Fracture surfaces ; Fracture toughness ; Hardness ; Humanities and Social Sciences ; Laminar composites ; Magnesium ; Magnesium base alloys ; Mechanical properties ; multidisciplinary ; Nanotechnology ; Notched beam tests ; Polytypes ; Propagation ; Properties ; Science ; Science (multidisciplinary) ; Structural analysis ; Structure ; Symmetry ; Tradeoffs</subject><ispartof>Nature (London), 2020-06, Vol.582 (7812), p.370-374</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jun 18, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c574t-be122c491ac17316035dfecb1b1852ea51cd76c8128478b95065ff5341df279b3</citedby><cites>FETCH-LOGICAL-c574t-be122c491ac17316035dfecb1b1852ea51cd76c8128478b95065ff5341df279b3</cites><orcidid>0000-0002-4594-4879 ; 0000-0002-9804-1614 ; 0000-0002-6070-2384 ; 0000-0001-8651-9273 ; 0000-0001-5716-3183 ; 0000-0002-8945-2032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-020-2361-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-020-2361-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32555490$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yue, Yonghai</creatorcontrib><creatorcontrib>Gao, Yufei</creatorcontrib><creatorcontrib>Hu, Wentao</creatorcontrib><creatorcontrib>Xu, Bo</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Zhang, Xuejiao</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Wang, Yanbin</creatorcontrib><creatorcontrib>Ge, Binghui</creatorcontrib><creatorcontrib>Yang, Zhenyu</creatorcontrib><creatorcontrib>Li, Zihe</creatorcontrib><creatorcontrib>Ying, Pan</creatorcontrib><creatorcontrib>Liu, Xiaoxiao</creatorcontrib><creatorcontrib>Yu, Dongli</creatorcontrib><creatorcontrib>Wei, Bin</creatorcontrib><creatorcontrib>Wang, Zhongchang</creatorcontrib><creatorcontrib>Zhou, Xiang-Feng</creatorcontrib><creatorcontrib>Guo, Lin</creatorcontrib><creatorcontrib>Tian, Yongjun</creatorcontrib><title>Hierarchically structured diamond composite with exceptional toughness</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The well known trade-off between hardness and toughness (resistance to fracture) makes simultaneous improvement of both properties challenging, especially in diamond. The hardness of diamond can be increased through nanostructuring strategies 1 , 2 , among which the formation of high-density nanoscale twins — crystalline regions related by symmetry — also toughens diamond 2 . In materials other than diamond, there are several other promising approaches to enhancing toughness in addition to nanotwinning 3 , such as bio-inspired laminated composite toughening 4 – 7 , transformation toughening 8 and dual-phase toughening 9 , but there has been little research into such approaches in diamond. Here we report the structural characterization of a diamond composite hierarchically assembled with coherently interfaced diamond polytypes (different stacking sequences), interwoven nanotwins and interlocked nanograins. The architecture of the composite enhances toughness more than nanotwinning alone, without sacrificing hardness. Single-edge notched beam tests yield a toughness up to five times that of synthetic diamond 10 , even greater than that of magnesium alloys. When fracture occurs, a crack propagates through diamond nanotwins of the 3C (cubic) polytype along {111} planes, via a zigzag path. As the crack encounters regions of non-3C polytypes, its propagation is diffused into sinuous fractures, with local transformation into 3C diamond near the fracture surfaces. Both processes dissipate strain energy, thereby enhancing toughness. This work could prove useful in making superhard materials and engineering ceramics. By using structural architecture with synergetic effects of hardening and toughening, the trade-off between hardness and toughness may eventually be surmounted. A diamond composite with a hierarchical microstructure possesses a combination of hardness and toughness surpassing that of all known materials.</description><subject>639/301/1023</subject><subject>639/301/357</subject><subject>Artificial diamonds</subject><subject>Carbon</subject><subject>Composition</subject><subject>Crack propagation</subject><subject>Diamonds</subject><subject>Fracture surfaces</subject><subject>Fracture toughness</subject><subject>Hardness</subject><subject>Humanities and Social Sciences</subject><subject>Laminar composites</subject><subject>Magnesium</subject><subject>Magnesium base alloys</subject><subject>Mechanical properties</subject><subject>multidisciplinary</subject><subject>Nanotechnology</subject><subject>Notched beam tests</subject><subject>Polytypes</subject><subject>Propagation</subject><subject>Properties</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Structural analysis</subject><subject>Structure</subject><subject>Symmetry</subject><subject>Tradeoffs</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10u9r1DAYB_Agirud_gG-keLeTKQzv9u-PA7nBkNBJ74Mafq0l9E2XZLi9t-b46bz5EaggfaTL3mePgi9IfiMYFZ-DJyIUuaY4pwySXL6DC0IL2TOZVk8RwuMaZnjkskjdBzCDcZYkIK_REeMCiF4hRfo_MKC195srNF9f5-F6GcTZw9N1lg9uLHJjBsmF2yE7JeNmwzuDEzRulH3WXRztxkhhFfoRav7AK8f9iX6cf7pen2RX339fLleXeVGFDzmNRBKDa-INqRgRGImmhZMTWpSCgpaENMU0pSElrwo60pgKdpWME6alhZVzZbodJc7eXc7Q4hqsMFA3-sR3BwUTR1hqexU9BKd_Edv3OzTrZOSopKlkBV7VJ3uQdmxddFrsw1VK0llxVOcSCo_oDoYU-96N0Jr0-s9_-6AN5O9Vf-iswMorQYGaw6mvt87kEyEu9jpOQR1-f3bvv3wtF1d_1x_2ddkp413IXho1eTtoP29IlhtR03tRk2lzqrtqKXHEr196O9cD9D8PfFnthKgOxDSp7ED__gDnk79DUay2MA</recordid><startdate>20200618</startdate><enddate>20200618</enddate><creator>Yue, Yonghai</creator><creator>Gao, Yufei</creator><creator>Hu, Wentao</creator><creator>Xu, Bo</creator><creator>Wang, Jing</creator><creator>Zhang, Xuejiao</creator><creator>Zhang, Qi</creator><creator>Wang, Yanbin</creator><creator>Ge, Binghui</creator><creator>Yang, Zhenyu</creator><creator>Li, Zihe</creator><creator>Ying, Pan</creator><creator>Liu, Xiaoxiao</creator><creator>Yu, Dongli</creator><creator>Wei, Bin</creator><creator>Wang, Zhongchang</creator><creator>Zhou, Xiang-Feng</creator><creator>Guo, Lin</creator><creator>Tian, Yongjun</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4594-4879</orcidid><orcidid>https://orcid.org/0000-0002-9804-1614</orcidid><orcidid>https://orcid.org/0000-0002-6070-2384</orcidid><orcidid>https://orcid.org/0000-0001-8651-9273</orcidid><orcidid>https://orcid.org/0000-0001-5716-3183</orcidid><orcidid>https://orcid.org/0000-0002-8945-2032</orcidid></search><sort><creationdate>20200618</creationdate><title>Hierarchically structured diamond composite with exceptional toughness</title><author>Yue, Yonghai ; Gao, Yufei ; Hu, Wentao ; Xu, Bo ; Wang, Jing ; Zhang, Xuejiao ; Zhang, Qi ; Wang, Yanbin ; Ge, Binghui ; Yang, Zhenyu ; Li, Zihe ; Ying, Pan ; Liu, Xiaoxiao ; Yu, Dongli ; Wei, Bin ; Wang, Zhongchang ; Zhou, Xiang-Feng ; Guo, Lin ; Tian, Yongjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c574t-be122c491ac17316035dfecb1b1852ea51cd76c8128478b95065ff5341df279b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/1023</topic><topic>639/301/357</topic><topic>Artificial diamonds</topic><topic>Carbon</topic><topic>Composition</topic><topic>Crack propagation</topic><topic>Diamonds</topic><topic>Fracture surfaces</topic><topic>Fracture toughness</topic><topic>Hardness</topic><topic>Humanities and Social Sciences</topic><topic>Laminar composites</topic><topic>Magnesium</topic><topic>Magnesium base alloys</topic><topic>Mechanical properties</topic><topic>multidisciplinary</topic><topic>Nanotechnology</topic><topic>Notched beam tests</topic><topic>Polytypes</topic><topic>Propagation</topic><topic>Properties</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Structural analysis</topic><topic>Structure</topic><topic>Symmetry</topic><topic>Tradeoffs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yue, Yonghai</creatorcontrib><creatorcontrib>Gao, Yufei</creatorcontrib><creatorcontrib>Hu, Wentao</creatorcontrib><creatorcontrib>Xu, Bo</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Zhang, Xuejiao</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Wang, Yanbin</creatorcontrib><creatorcontrib>Ge, Binghui</creatorcontrib><creatorcontrib>Yang, Zhenyu</creatorcontrib><creatorcontrib>Li, Zihe</creatorcontrib><creatorcontrib>Ying, Pan</creatorcontrib><creatorcontrib>Liu, Xiaoxiao</creatorcontrib><creatorcontrib>Yu, Dongli</creatorcontrib><creatorcontrib>Wei, Bin</creatorcontrib><creatorcontrib>Wang, Zhongchang</creatorcontrib><creatorcontrib>Zhou, Xiang-Feng</creatorcontrib><creatorcontrib>Guo, Lin</creatorcontrib><creatorcontrib>Tian, Yongjun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yue, Yonghai</au><au>Gao, Yufei</au><au>Hu, Wentao</au><au>Xu, Bo</au><au>Wang, Jing</au><au>Zhang, Xuejiao</au><au>Zhang, Qi</au><au>Wang, Yanbin</au><au>Ge, Binghui</au><au>Yang, Zhenyu</au><au>Li, Zihe</au><au>Ying, Pan</au><au>Liu, Xiaoxiao</au><au>Yu, Dongli</au><au>Wei, Bin</au><au>Wang, Zhongchang</au><au>Zhou, Xiang-Feng</au><au>Guo, Lin</au><au>Tian, Yongjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchically structured diamond composite with exceptional toughness</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2020-06-18</date><risdate>2020</risdate><volume>582</volume><issue>7812</issue><spage>370</spage><epage>374</epage><pages>370-374</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The well known trade-off between hardness and toughness (resistance to fracture) makes simultaneous improvement of both properties challenging, especially in diamond. The hardness of diamond can be increased through nanostructuring strategies 1 , 2 , among which the formation of high-density nanoscale twins — crystalline regions related by symmetry — also toughens diamond 2 . In materials other than diamond, there are several other promising approaches to enhancing toughness in addition to nanotwinning 3 , such as bio-inspired laminated composite toughening 4 – 7 , transformation toughening 8 and dual-phase toughening 9 , but there has been little research into such approaches in diamond. Here we report the structural characterization of a diamond composite hierarchically assembled with coherently interfaced diamond polytypes (different stacking sequences), interwoven nanotwins and interlocked nanograins. The architecture of the composite enhances toughness more than nanotwinning alone, without sacrificing hardness. Single-edge notched beam tests yield a toughness up to five times that of synthetic diamond 10 , even greater than that of magnesium alloys. When fracture occurs, a crack propagates through diamond nanotwins of the 3C (cubic) polytype along {111} planes, via a zigzag path. As the crack encounters regions of non-3C polytypes, its propagation is diffused into sinuous fractures, with local transformation into 3C diamond near the fracture surfaces. Both processes dissipate strain energy, thereby enhancing toughness. This work could prove useful in making superhard materials and engineering ceramics. By using structural architecture with synergetic effects of hardening and toughening, the trade-off between hardness and toughness may eventually be surmounted. A diamond composite with a hierarchical microstructure possesses a combination of hardness and toughness surpassing that of all known materials.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32555490</pmid><doi>10.1038/s41586-020-2361-2</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4594-4879</orcidid><orcidid>https://orcid.org/0000-0002-9804-1614</orcidid><orcidid>https://orcid.org/0000-0002-6070-2384</orcidid><orcidid>https://orcid.org/0000-0001-8651-9273</orcidid><orcidid>https://orcid.org/0000-0001-5716-3183</orcidid><orcidid>https://orcid.org/0000-0002-8945-2032</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2020-06, Vol.582 (7812), p.370-374
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_2415300208
source Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 639/301/1023
639/301/357
Artificial diamonds
Carbon
Composition
Crack propagation
Diamonds
Fracture surfaces
Fracture toughness
Hardness
Humanities and Social Sciences
Laminar composites
Magnesium
Magnesium base alloys
Mechanical properties
multidisciplinary
Nanotechnology
Notched beam tests
Polytypes
Propagation
Properties
Science
Science (multidisciplinary)
Structural analysis
Structure
Symmetry
Tradeoffs
title Hierarchically structured diamond composite with exceptional toughness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A56%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchically%20structured%20diamond%20composite%20with%20exceptional%20toughness&rft.jtitle=Nature%20(London)&rft.au=Yue,%20Yonghai&rft.date=2020-06-18&rft.volume=582&rft.issue=7812&rft.spage=370&rft.epage=374&rft.pages=370-374&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-020-2361-2&rft_dat=%3Cgale_proqu%3EA626945305%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2659685693&rft_id=info:pmid/32555490&rft_galeid=A626945305&rfr_iscdi=true