Liver X Receptor Alpha Activation Inhibits Autophagy and Lipophagy in Hepatocytes by Dysregulating Autophagy‐Related 4B Cysteine Peptidase and Rab‐8B, Reducing Mitochondrial Fuel Oxidation

Background and Aims Fat accumulation results from increased fat absorption and/or defective fat metabolism. Currently, the lipid‐sensing nuclear receptor that controls fat utilization in hepatocytes is elusive. Liver X receptor alpha (LXRα) promotes accumulation of lipids through the induction of se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hepatology (Baltimore, Md.) Md.), 2021-04, Vol.73 (4), p.1307-1326
Hauptverfasser: Kim, Yun Seok, Nam, Hyeon Joo, Han, Chang Yeob, Joo, Min Sung, Jang, Kiseok, Jun, Dae Won, Kim, Sang Geon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1326
container_issue 4
container_start_page 1307
container_title Hepatology (Baltimore, Md.)
container_volume 73
creator Kim, Yun Seok
Nam, Hyeon Joo
Han, Chang Yeob
Joo, Min Sung
Jang, Kiseok
Jun, Dae Won
Kim, Sang Geon
description Background and Aims Fat accumulation results from increased fat absorption and/or defective fat metabolism. Currently, the lipid‐sensing nuclear receptor that controls fat utilization in hepatocytes is elusive. Liver X receptor alpha (LXRα) promotes accumulation of lipids through the induction of several lipogenic genes. However, its effect on lipid degradation is open for study. Here, we investigated the inhibitory role of LXRα in autophagy/lipophagy in hepatocytes and the underlying basis. Approach and Results In LXRα knockout mice fed a high‐fat diet, or cell models, LXRα activation suppressed the function of mitochondria by inhibiting autophagy/lipophagy and induced hepatic steatosis. Gene sets associated with “autophagy” were enriched in hepatic transcriptome data. Autophagy flux was markedly augmented in the LXRα knockout mouse liver and primary hepatocytes. Mechanistically, LXRα suppressed autophagy‐related 4B cysteine peptidase (ATG4B) and Rab‐8B, responsible for autophagosome and ‐lysosome formation, by inducing let‐7a and microRNA (miR)‐34a. Chromatin immunoprecipitation assay enabled us to find LXRα as a transcription factor of let‐7a and miR‐34a. Moreover, 3’ untranslated region luciferase assay substantiated the direct inhibitory effects of let‐7a and miR‐34a on ATG4B and Rab‐8B. Consistently, either LXRα activation or the let‐7a/miR‐34a transfection lowered mitochondrial oxygen consumption rate and mitochondrial transmembrane potential and increased fat levels. In obese animals or nonalcoholic fatty liver disease (NAFLD) patients, let‐7a and miR‐34a levels were elevated with simultaneous decreases in ATG4B and Rab‐8B levels. Conclusions LXRα inhibits autophagy in hepatocytes through down‐regulating ATG4B and Rab‐8B by transcriptionally activating microRNA let‐7a‐2 and microRNA 34a genes and suppresses mitochondrial biogenesis and fuel consumption. This highlights a function of LXRα that culminates in the progression of liver steatosis and steatohepatitis, and the identified targets may be applied for a therapeutic strategy in the treatment of NAFLD.
doi_str_mv 10.1002/hep.31423
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2415299056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2415299056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3533-dd4b0107235532bf98256160f26fb9841af02f0f791c39fac2e55ef9ff98d08e3</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhi0EokvhwAsgS1xAIu3YjpP4uF3abqVFrVYgcYucZLzrKpuE2CnkxiPwSH2WPkm93YVKlThZtr_5ZjQ_IW8ZHDEAfrzG7kiwmItnZMIkTyMhJDwnE-ApRIoJdUBeOXcNACrm2UtyILiUaQbxhNwu7A329DtdYomdb3s6rbu1ptPS2xvtbdvQi2ZtC-sdnQ6-DX-rkeqmogvb7W-2oXPstG_L0aOjxUg_j67H1VAHQbN6rLv7_WeJ4RErGp_Q2eg82gbpVWhsK-3wwbvUReCyk09hpGoot4IvNrjXbVP1Vtf0bMCaXv4KFdvxXpMXRtcO3-zPQ_Lt7PTrbB4tLs8vZtNFVAopRFRVcQEMUi6kFLwwKuMyYQkYnphCZTHTBrgBkypWCmV0yVFKNMoEsoIMxSH5sPN2fftjQOfzjXUl1rVusB1czuOweaVAJgF9_wS9boe-CdPlXDLOkkwICNTHHVX2rQvrMnnX243ux5xBvo01D7HmD7EG9t3eOBQbrP6Rf3MMwPEO-GlrHP9vyuenVzvlPQzzr8o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512168330</pqid></control><display><type>article</type><title>Liver X Receptor Alpha Activation Inhibits Autophagy and Lipophagy in Hepatocytes by Dysregulating Autophagy‐Related 4B Cysteine Peptidase and Rab‐8B, Reducing Mitochondrial Fuel Oxidation</title><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kim, Yun Seok ; Nam, Hyeon Joo ; Han, Chang Yeob ; Joo, Min Sung ; Jang, Kiseok ; Jun, Dae Won ; Kim, Sang Geon</creator><creatorcontrib>Kim, Yun Seok ; Nam, Hyeon Joo ; Han, Chang Yeob ; Joo, Min Sung ; Jang, Kiseok ; Jun, Dae Won ; Kim, Sang Geon</creatorcontrib><description>Background and Aims Fat accumulation results from increased fat absorption and/or defective fat metabolism. Currently, the lipid‐sensing nuclear receptor that controls fat utilization in hepatocytes is elusive. Liver X receptor alpha (LXRα) promotes accumulation of lipids through the induction of several lipogenic genes. However, its effect on lipid degradation is open for study. Here, we investigated the inhibitory role of LXRα in autophagy/lipophagy in hepatocytes and the underlying basis. Approach and Results In LXRα knockout mice fed a high‐fat diet, or cell models, LXRα activation suppressed the function of mitochondria by inhibiting autophagy/lipophagy and induced hepatic steatosis. Gene sets associated with “autophagy” were enriched in hepatic transcriptome data. Autophagy flux was markedly augmented in the LXRα knockout mouse liver and primary hepatocytes. Mechanistically, LXRα suppressed autophagy‐related 4B cysteine peptidase (ATG4B) and Rab‐8B, responsible for autophagosome and ‐lysosome formation, by inducing let‐7a and microRNA (miR)‐34a. Chromatin immunoprecipitation assay enabled us to find LXRα as a transcription factor of let‐7a and miR‐34a. Moreover, 3’ untranslated region luciferase assay substantiated the direct inhibitory effects of let‐7a and miR‐34a on ATG4B and Rab‐8B. Consistently, either LXRα activation or the let‐7a/miR‐34a transfection lowered mitochondrial oxygen consumption rate and mitochondrial transmembrane potential and increased fat levels. In obese animals or nonalcoholic fatty liver disease (NAFLD) patients, let‐7a and miR‐34a levels were elevated with simultaneous decreases in ATG4B and Rab‐8B levels. Conclusions LXRα inhibits autophagy in hepatocytes through down‐regulating ATG4B and Rab‐8B by transcriptionally activating microRNA let‐7a‐2 and microRNA 34a genes and suppresses mitochondrial biogenesis and fuel consumption. This highlights a function of LXRα that culminates in the progression of liver steatosis and steatohepatitis, and the identified targets may be applied for a therapeutic strategy in the treatment of NAFLD.</description><identifier>ISSN: 0270-9139</identifier><identifier>EISSN: 1527-3350</identifier><identifier>DOI: 10.1002/hep.31423</identifier><identifier>PMID: 32557804</identifier><language>eng</language><publisher>United States: Wolters Kluwer Health, Inc</publisher><subject>3' Untranslated regions ; Autophagy ; Cell activation ; Cell culture ; Chromatin ; Cysteine ; Fat metabolism ; Fatty liver ; Gene expression ; Hepatocytes ; Hepatology ; High fat diet ; Immunoprecipitation ; Lipid metabolism ; Lipids ; Liver ; Liver diseases ; Liver X receptors ; Membrane potential ; MicroRNAs ; miRNA ; Mitochondria ; Oxidation ; Oxygen consumption ; Peptidase ; Phagocytosis ; Steatosis ; Transcriptomes ; Transfection</subject><ispartof>Hepatology (Baltimore, Md.), 2021-04, Vol.73 (4), p.1307-1326</ispartof><rights>2020 by the American Association for the Study of Liver Diseases.</rights><rights>2021 by the American Association for the Study of Liver Diseases.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3533-dd4b0107235532bf98256160f26fb9841af02f0f791c39fac2e55ef9ff98d08e3</citedby><cites>FETCH-LOGICAL-c3533-dd4b0107235532bf98256160f26fb9841af02f0f791c39fac2e55ef9ff98d08e3</cites><orcidid>0000-0002-2875-6139</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhep.31423$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhep.31423$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32557804$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Yun Seok</creatorcontrib><creatorcontrib>Nam, Hyeon Joo</creatorcontrib><creatorcontrib>Han, Chang Yeob</creatorcontrib><creatorcontrib>Joo, Min Sung</creatorcontrib><creatorcontrib>Jang, Kiseok</creatorcontrib><creatorcontrib>Jun, Dae Won</creatorcontrib><creatorcontrib>Kim, Sang Geon</creatorcontrib><title>Liver X Receptor Alpha Activation Inhibits Autophagy and Lipophagy in Hepatocytes by Dysregulating Autophagy‐Related 4B Cysteine Peptidase and Rab‐8B, Reducing Mitochondrial Fuel Oxidation</title><title>Hepatology (Baltimore, Md.)</title><addtitle>Hepatology</addtitle><description>Background and Aims Fat accumulation results from increased fat absorption and/or defective fat metabolism. Currently, the lipid‐sensing nuclear receptor that controls fat utilization in hepatocytes is elusive. Liver X receptor alpha (LXRα) promotes accumulation of lipids through the induction of several lipogenic genes. However, its effect on lipid degradation is open for study. Here, we investigated the inhibitory role of LXRα in autophagy/lipophagy in hepatocytes and the underlying basis. Approach and Results In LXRα knockout mice fed a high‐fat diet, or cell models, LXRα activation suppressed the function of mitochondria by inhibiting autophagy/lipophagy and induced hepatic steatosis. Gene sets associated with “autophagy” were enriched in hepatic transcriptome data. Autophagy flux was markedly augmented in the LXRα knockout mouse liver and primary hepatocytes. Mechanistically, LXRα suppressed autophagy‐related 4B cysteine peptidase (ATG4B) and Rab‐8B, responsible for autophagosome and ‐lysosome formation, by inducing let‐7a and microRNA (miR)‐34a. Chromatin immunoprecipitation assay enabled us to find LXRα as a transcription factor of let‐7a and miR‐34a. Moreover, 3’ untranslated region luciferase assay substantiated the direct inhibitory effects of let‐7a and miR‐34a on ATG4B and Rab‐8B. Consistently, either LXRα activation or the let‐7a/miR‐34a transfection lowered mitochondrial oxygen consumption rate and mitochondrial transmembrane potential and increased fat levels. In obese animals or nonalcoholic fatty liver disease (NAFLD) patients, let‐7a and miR‐34a levels were elevated with simultaneous decreases in ATG4B and Rab‐8B levels. Conclusions LXRα inhibits autophagy in hepatocytes through down‐regulating ATG4B and Rab‐8B by transcriptionally activating microRNA let‐7a‐2 and microRNA 34a genes and suppresses mitochondrial biogenesis and fuel consumption. This highlights a function of LXRα that culminates in the progression of liver steatosis and steatohepatitis, and the identified targets may be applied for a therapeutic strategy in the treatment of NAFLD.</description><subject>3' Untranslated regions</subject><subject>Autophagy</subject><subject>Cell activation</subject><subject>Cell culture</subject><subject>Chromatin</subject><subject>Cysteine</subject><subject>Fat metabolism</subject><subject>Fatty liver</subject><subject>Gene expression</subject><subject>Hepatocytes</subject><subject>Hepatology</subject><subject>High fat diet</subject><subject>Immunoprecipitation</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Liver</subject><subject>Liver diseases</subject><subject>Liver X receptors</subject><subject>Membrane potential</subject><subject>MicroRNAs</subject><subject>miRNA</subject><subject>Mitochondria</subject><subject>Oxidation</subject><subject>Oxygen consumption</subject><subject>Peptidase</subject><subject>Phagocytosis</subject><subject>Steatosis</subject><subject>Transcriptomes</subject><subject>Transfection</subject><issn>0270-9139</issn><issn>1527-3350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kcFu1DAQhi0EokvhwAsgS1xAIu3YjpP4uF3abqVFrVYgcYucZLzrKpuE2CnkxiPwSH2WPkm93YVKlThZtr_5ZjQ_IW8ZHDEAfrzG7kiwmItnZMIkTyMhJDwnE-ApRIoJdUBeOXcNACrm2UtyILiUaQbxhNwu7A329DtdYomdb3s6rbu1ptPS2xvtbdvQi2ZtC-sdnQ6-DX-rkeqmogvb7W-2oXPstG_L0aOjxUg_j67H1VAHQbN6rLv7_WeJ4RErGp_Q2eg82gbpVWhsK-3wwbvUReCyk09hpGoot4IvNrjXbVP1Vtf0bMCaXv4KFdvxXpMXRtcO3-zPQ_Lt7PTrbB4tLs8vZtNFVAopRFRVcQEMUi6kFLwwKuMyYQkYnphCZTHTBrgBkypWCmV0yVFKNMoEsoIMxSH5sPN2fftjQOfzjXUl1rVusB1czuOweaVAJgF9_wS9boe-CdPlXDLOkkwICNTHHVX2rQvrMnnX243ux5xBvo01D7HmD7EG9t3eOBQbrP6Rf3MMwPEO-GlrHP9vyuenVzvlPQzzr8o</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Kim, Yun Seok</creator><creator>Nam, Hyeon Joo</creator><creator>Han, Chang Yeob</creator><creator>Joo, Min Sung</creator><creator>Jang, Kiseok</creator><creator>Jun, Dae Won</creator><creator>Kim, Sang Geon</creator><general>Wolters Kluwer Health, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2875-6139</orcidid></search><sort><creationdate>202104</creationdate><title>Liver X Receptor Alpha Activation Inhibits Autophagy and Lipophagy in Hepatocytes by Dysregulating Autophagy‐Related 4B Cysteine Peptidase and Rab‐8B, Reducing Mitochondrial Fuel Oxidation</title><author>Kim, Yun Seok ; Nam, Hyeon Joo ; Han, Chang Yeob ; Joo, Min Sung ; Jang, Kiseok ; Jun, Dae Won ; Kim, Sang Geon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3533-dd4b0107235532bf98256160f26fb9841af02f0f791c39fac2e55ef9ff98d08e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3' Untranslated regions</topic><topic>Autophagy</topic><topic>Cell activation</topic><topic>Cell culture</topic><topic>Chromatin</topic><topic>Cysteine</topic><topic>Fat metabolism</topic><topic>Fatty liver</topic><topic>Gene expression</topic><topic>Hepatocytes</topic><topic>Hepatology</topic><topic>High fat diet</topic><topic>Immunoprecipitation</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Liver</topic><topic>Liver diseases</topic><topic>Liver X receptors</topic><topic>Membrane potential</topic><topic>MicroRNAs</topic><topic>miRNA</topic><topic>Mitochondria</topic><topic>Oxidation</topic><topic>Oxygen consumption</topic><topic>Peptidase</topic><topic>Phagocytosis</topic><topic>Steatosis</topic><topic>Transcriptomes</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yun Seok</creatorcontrib><creatorcontrib>Nam, Hyeon Joo</creatorcontrib><creatorcontrib>Han, Chang Yeob</creatorcontrib><creatorcontrib>Joo, Min Sung</creatorcontrib><creatorcontrib>Jang, Kiseok</creatorcontrib><creatorcontrib>Jun, Dae Won</creatorcontrib><creatorcontrib>Kim, Sang Geon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Hepatology (Baltimore, Md.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Yun Seok</au><au>Nam, Hyeon Joo</au><au>Han, Chang Yeob</au><au>Joo, Min Sung</au><au>Jang, Kiseok</au><au>Jun, Dae Won</au><au>Kim, Sang Geon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liver X Receptor Alpha Activation Inhibits Autophagy and Lipophagy in Hepatocytes by Dysregulating Autophagy‐Related 4B Cysteine Peptidase and Rab‐8B, Reducing Mitochondrial Fuel Oxidation</atitle><jtitle>Hepatology (Baltimore, Md.)</jtitle><addtitle>Hepatology</addtitle><date>2021-04</date><risdate>2021</risdate><volume>73</volume><issue>4</issue><spage>1307</spage><epage>1326</epage><pages>1307-1326</pages><issn>0270-9139</issn><eissn>1527-3350</eissn><abstract>Background and Aims Fat accumulation results from increased fat absorption and/or defective fat metabolism. Currently, the lipid‐sensing nuclear receptor that controls fat utilization in hepatocytes is elusive. Liver X receptor alpha (LXRα) promotes accumulation of lipids through the induction of several lipogenic genes. However, its effect on lipid degradation is open for study. Here, we investigated the inhibitory role of LXRα in autophagy/lipophagy in hepatocytes and the underlying basis. Approach and Results In LXRα knockout mice fed a high‐fat diet, or cell models, LXRα activation suppressed the function of mitochondria by inhibiting autophagy/lipophagy and induced hepatic steatosis. Gene sets associated with “autophagy” were enriched in hepatic transcriptome data. Autophagy flux was markedly augmented in the LXRα knockout mouse liver and primary hepatocytes. Mechanistically, LXRα suppressed autophagy‐related 4B cysteine peptidase (ATG4B) and Rab‐8B, responsible for autophagosome and ‐lysosome formation, by inducing let‐7a and microRNA (miR)‐34a. Chromatin immunoprecipitation assay enabled us to find LXRα as a transcription factor of let‐7a and miR‐34a. Moreover, 3’ untranslated region luciferase assay substantiated the direct inhibitory effects of let‐7a and miR‐34a on ATG4B and Rab‐8B. Consistently, either LXRα activation or the let‐7a/miR‐34a transfection lowered mitochondrial oxygen consumption rate and mitochondrial transmembrane potential and increased fat levels. In obese animals or nonalcoholic fatty liver disease (NAFLD) patients, let‐7a and miR‐34a levels were elevated with simultaneous decreases in ATG4B and Rab‐8B levels. Conclusions LXRα inhibits autophagy in hepatocytes through down‐regulating ATG4B and Rab‐8B by transcriptionally activating microRNA let‐7a‐2 and microRNA 34a genes and suppresses mitochondrial biogenesis and fuel consumption. This highlights a function of LXRα that culminates in the progression of liver steatosis and steatohepatitis, and the identified targets may be applied for a therapeutic strategy in the treatment of NAFLD.</abstract><cop>United States</cop><pub>Wolters Kluwer Health, Inc</pub><pmid>32557804</pmid><doi>10.1002/hep.31423</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-2875-6139</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0270-9139
ispartof Hepatology (Baltimore, Md.), 2021-04, Vol.73 (4), p.1307-1326
issn 0270-9139
1527-3350
language eng
recordid cdi_proquest_miscellaneous_2415299056
source Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals
subjects 3' Untranslated regions
Autophagy
Cell activation
Cell culture
Chromatin
Cysteine
Fat metabolism
Fatty liver
Gene expression
Hepatocytes
Hepatology
High fat diet
Immunoprecipitation
Lipid metabolism
Lipids
Liver
Liver diseases
Liver X receptors
Membrane potential
MicroRNAs
miRNA
Mitochondria
Oxidation
Oxygen consumption
Peptidase
Phagocytosis
Steatosis
Transcriptomes
Transfection
title Liver X Receptor Alpha Activation Inhibits Autophagy and Lipophagy in Hepatocytes by Dysregulating Autophagy‐Related 4B Cysteine Peptidase and Rab‐8B, Reducing Mitochondrial Fuel Oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A12%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liver%20X%20Receptor%20Alpha%20Activation%20Inhibits%20Autophagy%20and%20Lipophagy%20in%20Hepatocytes%20by%20Dysregulating%20Autophagy%E2%80%90Related%204B%20Cysteine%20Peptidase%20and%20Rab%E2%80%908B,%20Reducing%20Mitochondrial%20Fuel%20Oxidation&rft.jtitle=Hepatology%20(Baltimore,%20Md.)&rft.au=Kim,%20Yun%20Seok&rft.date=2021-04&rft.volume=73&rft.issue=4&rft.spage=1307&rft.epage=1326&rft.pages=1307-1326&rft.issn=0270-9139&rft.eissn=1527-3350&rft_id=info:doi/10.1002/hep.31423&rft_dat=%3Cproquest_cross%3E2415299056%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512168330&rft_id=info:pmid/32557804&rfr_iscdi=true