HDAC11 is a novel regulator of fatty acid oxidative metabolism in skeletal muscle

Skeletal muscle is the largest tissue in mammalian organisms and is a key determinant of basal metabolic rate and whole‐body energy metabolism. Histone deacetylase 11 (HDAC11) is the only member of the class IV subfamily of HDACs, and it is highly expressed in skeletal muscle, but its role in skelet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FEBS journal 2021-02, Vol.288 (3), p.902-919
Hauptverfasser: Hurtado, Erica, Núñez‐Álvarez, Yaiza, Muñoz, Mar, Gutiérrez‐Caballero, Cristina, Casas, Josefina, Pendás, Alberto M., Peinado, Miguel A., Suelves, Mònica
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 919
container_issue 3
container_start_page 902
container_title The FEBS journal
container_volume 288
creator Hurtado, Erica
Núñez‐Álvarez, Yaiza
Muñoz, Mar
Gutiérrez‐Caballero, Cristina
Casas, Josefina
Pendás, Alberto M.
Peinado, Miguel A.
Suelves, Mònica
description Skeletal muscle is the largest tissue in mammalian organisms and is a key determinant of basal metabolic rate and whole‐body energy metabolism. Histone deacetylase 11 (HDAC11) is the only member of the class IV subfamily of HDACs, and it is highly expressed in skeletal muscle, but its role in skeletal muscle physiology has never been investigated. Here, we describe for the first time the consequences of HDAC11 genetic deficiency in skeletal muscle, which results in the improvement of muscle function enhancing fatigue resistance and muscle strength. Loss of HDAC11 had no obvious impact on skeletal muscle structure but increased the number of oxidative myofibers by promoting a glycolytic‐to‐oxidative muscle fiber switch. Unexpectedly, HDAC11 was localized in muscle mitochondria and its deficiency enhanced mitochondrial content. In particular, we showed that HDAC11 depletion increased mitochondrial fatty acid β‐oxidation through activating the AMP‐activated protein kinase‐acetyl‐CoA carboxylase pathway and reducing acylcarnitine levels in vivo, thus providing a mechanistic explanation for the improved muscle strength and fatigue resistance. Overall, our data reveal a unique role of HDAC11 in the maintenance of muscle fiber‐type balance and the mitochondrial lipid oxidation. These findings shed light on the mechanisms governing muscle metabolism and may have implications for chronic muscle metabolic disease management. Schematic representation of histone deacetylase 11 (HDAC11) functions in skeletal muscle tissue. HDAC11 is required for balancing fiber‐type composition and for modulating mitochondrial lipid oxidation in skeletal muscle. Lack of HDAC11 results in enhanced oxidative capacity of muscle tissue, increasing mitochondrial fatty acid β‐oxidation capacity. The functional consequences of HDAC11 deficiency are the improvement of muscle strength and fatigue resistance, indicating a better skeletal muscle performance.
doi_str_mv 10.1111/febs.15456
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2415292043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2415292043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5046-4dd87cc0a2a21ea16a0d896c6d9f2230f227c173dc0aedda9daf06b60753b8a73</originalsourceid><addsrcrecordid>eNp90EFLwzAYBuAgipvTiz9AAl5EqCZpkrbHOTcnDERU8FbSJJXMdJlNO92_N7NzBw_m8CWEh5ePF4BTjK5wONelLvwVZpTxPdDHCSUR5Szd373paw8ceT9HKGY0yw5BLyaMxwSRPnic3g5HGEPjoYALt9IW1vqttaJxNXQlLEXTrKGQRkH3ZZRozErDSjeicNb4CpoF9O_ahg8Lq9ZLq4_BQSms1yfbewBeJuPn0TSaPdzdj4azSDJEeUSVShMpkSCCYC0wF0ilGZdcZSUhMQojkTiJVSBaKZEpUSJecJSwuEhFEg_ARZe7rN1Hq32TV8ZLba1YaNf6nFDMSEYQjQM9_0Pnrq0XYbugUkpwmqVZUJedkrXzvtZlvqxNJep1jlG-KTrfFJ3_FB3w2TayLSqtdvS32QBwBz6N1et_ovLJ-OapC_0GzSWHMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2484218989</pqid></control><display><type>article</type><title>HDAC11 is a novel regulator of fatty acid oxidative metabolism in skeletal muscle</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Free Full-Text Journals in Chemistry</source><creator>Hurtado, Erica ; Núñez‐Álvarez, Yaiza ; Muñoz, Mar ; Gutiérrez‐Caballero, Cristina ; Casas, Josefina ; Pendás, Alberto M. ; Peinado, Miguel A. ; Suelves, Mònica</creator><creatorcontrib>Hurtado, Erica ; Núñez‐Álvarez, Yaiza ; Muñoz, Mar ; Gutiérrez‐Caballero, Cristina ; Casas, Josefina ; Pendás, Alberto M. ; Peinado, Miguel A. ; Suelves, Mònica</creatorcontrib><description>Skeletal muscle is the largest tissue in mammalian organisms and is a key determinant of basal metabolic rate and whole‐body energy metabolism. Histone deacetylase 11 (HDAC11) is the only member of the class IV subfamily of HDACs, and it is highly expressed in skeletal muscle, but its role in skeletal muscle physiology has never been investigated. Here, we describe for the first time the consequences of HDAC11 genetic deficiency in skeletal muscle, which results in the improvement of muscle function enhancing fatigue resistance and muscle strength. Loss of HDAC11 had no obvious impact on skeletal muscle structure but increased the number of oxidative myofibers by promoting a glycolytic‐to‐oxidative muscle fiber switch. Unexpectedly, HDAC11 was localized in muscle mitochondria and its deficiency enhanced mitochondrial content. In particular, we showed that HDAC11 depletion increased mitochondrial fatty acid β‐oxidation through activating the AMP‐activated protein kinase‐acetyl‐CoA carboxylase pathway and reducing acylcarnitine levels in vivo, thus providing a mechanistic explanation for the improved muscle strength and fatigue resistance. Overall, our data reveal a unique role of HDAC11 in the maintenance of muscle fiber‐type balance and the mitochondrial lipid oxidation. These findings shed light on the mechanisms governing muscle metabolism and may have implications for chronic muscle metabolic disease management. Schematic representation of histone deacetylase 11 (HDAC11) functions in skeletal muscle tissue. HDAC11 is required for balancing fiber‐type composition and for modulating mitochondrial lipid oxidation in skeletal muscle. Lack of HDAC11 results in enhanced oxidative capacity of muscle tissue, increasing mitochondrial fatty acid β‐oxidation capacity. The functional consequences of HDAC11 deficiency are the improvement of muscle strength and fatigue resistance, indicating a better skeletal muscle performance.</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/febs.15456</identifier><identifier>PMID: 32563202</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>acylcarnitines ; AMP ; AMP-Activated Protein Kinases - metabolism ; Animals ; Carnitine - analogs &amp; derivatives ; Carnitine - metabolism ; Depletion ; Energy metabolism ; Energy Metabolism - genetics ; Fatigue ; fatigue resistance ; Fatigue strength ; fatty acid oxidation ; Fatty acids ; Fatty Acids - metabolism ; fiber type ; Gene Expression Regulation ; Glycolysis ; Glycolysis - genetics ; HDAC11 ; Histone deacetylase ; Histone Deacetylases - genetics ; Histone Deacetylases - metabolism ; Kinases ; Lipid peroxidation ; Lipids ; Metabolic disorders ; Metabolic rate ; Metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mitochondria ; Mitochondria, Muscle - metabolism ; Muscle Fibers, Skeletal - metabolism ; Muscle strength ; Muscle, Skeletal - metabolism ; Muscular fatigue ; Musculoskeletal system ; Oxidation ; Oxidation-Reduction ; Oxidative metabolism ; Protein kinase ; Skeletal muscle</subject><ispartof>The FEBS journal, 2021-02, Vol.288 (3), p.902-919</ispartof><rights>2020 Federation of European Biochemical Societies</rights><rights>2020 Federation of European Biochemical Societies.</rights><rights>Copyright © 2021 Federation of European Biochemical Societies</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5046-4dd87cc0a2a21ea16a0d896c6d9f2230f227c173dc0aedda9daf06b60753b8a73</citedby><cites>FETCH-LOGICAL-c5046-4dd87cc0a2a21ea16a0d896c6d9f2230f227c173dc0aedda9daf06b60753b8a73</cites><orcidid>0000-0001-7095-5804</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ffebs.15456$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ffebs.15456$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32563202$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hurtado, Erica</creatorcontrib><creatorcontrib>Núñez‐Álvarez, Yaiza</creatorcontrib><creatorcontrib>Muñoz, Mar</creatorcontrib><creatorcontrib>Gutiérrez‐Caballero, Cristina</creatorcontrib><creatorcontrib>Casas, Josefina</creatorcontrib><creatorcontrib>Pendás, Alberto M.</creatorcontrib><creatorcontrib>Peinado, Miguel A.</creatorcontrib><creatorcontrib>Suelves, Mònica</creatorcontrib><title>HDAC11 is a novel regulator of fatty acid oxidative metabolism in skeletal muscle</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>Skeletal muscle is the largest tissue in mammalian organisms and is a key determinant of basal metabolic rate and whole‐body energy metabolism. Histone deacetylase 11 (HDAC11) is the only member of the class IV subfamily of HDACs, and it is highly expressed in skeletal muscle, but its role in skeletal muscle physiology has never been investigated. Here, we describe for the first time the consequences of HDAC11 genetic deficiency in skeletal muscle, which results in the improvement of muscle function enhancing fatigue resistance and muscle strength. Loss of HDAC11 had no obvious impact on skeletal muscle structure but increased the number of oxidative myofibers by promoting a glycolytic‐to‐oxidative muscle fiber switch. Unexpectedly, HDAC11 was localized in muscle mitochondria and its deficiency enhanced mitochondrial content. In particular, we showed that HDAC11 depletion increased mitochondrial fatty acid β‐oxidation through activating the AMP‐activated protein kinase‐acetyl‐CoA carboxylase pathway and reducing acylcarnitine levels in vivo, thus providing a mechanistic explanation for the improved muscle strength and fatigue resistance. Overall, our data reveal a unique role of HDAC11 in the maintenance of muscle fiber‐type balance and the mitochondrial lipid oxidation. These findings shed light on the mechanisms governing muscle metabolism and may have implications for chronic muscle metabolic disease management. Schematic representation of histone deacetylase 11 (HDAC11) functions in skeletal muscle tissue. HDAC11 is required for balancing fiber‐type composition and for modulating mitochondrial lipid oxidation in skeletal muscle. Lack of HDAC11 results in enhanced oxidative capacity of muscle tissue, increasing mitochondrial fatty acid β‐oxidation capacity. The functional consequences of HDAC11 deficiency are the improvement of muscle strength and fatigue resistance, indicating a better skeletal muscle performance.</description><subject>acylcarnitines</subject><subject>AMP</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>Animals</subject><subject>Carnitine - analogs &amp; derivatives</subject><subject>Carnitine - metabolism</subject><subject>Depletion</subject><subject>Energy metabolism</subject><subject>Energy Metabolism - genetics</subject><subject>Fatigue</subject><subject>fatigue resistance</subject><subject>Fatigue strength</subject><subject>fatty acid oxidation</subject><subject>Fatty acids</subject><subject>Fatty Acids - metabolism</subject><subject>fiber type</subject><subject>Gene Expression Regulation</subject><subject>Glycolysis</subject><subject>Glycolysis - genetics</subject><subject>HDAC11</subject><subject>Histone deacetylase</subject><subject>Histone Deacetylases - genetics</subject><subject>Histone Deacetylases - metabolism</subject><subject>Kinases</subject><subject>Lipid peroxidation</subject><subject>Lipids</subject><subject>Metabolic disorders</subject><subject>Metabolic rate</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mitochondria</subject><subject>Mitochondria, Muscle - metabolism</subject><subject>Muscle Fibers, Skeletal - metabolism</subject><subject>Muscle strength</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscular fatigue</subject><subject>Musculoskeletal system</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxidative metabolism</subject><subject>Protein kinase</subject><subject>Skeletal muscle</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90EFLwzAYBuAgipvTiz9AAl5EqCZpkrbHOTcnDERU8FbSJJXMdJlNO92_N7NzBw_m8CWEh5ePF4BTjK5wONelLvwVZpTxPdDHCSUR5Szd373paw8ceT9HKGY0yw5BLyaMxwSRPnic3g5HGEPjoYALt9IW1vqttaJxNXQlLEXTrKGQRkH3ZZRozErDSjeicNb4CpoF9O_ahg8Lq9ZLq4_BQSms1yfbewBeJuPn0TSaPdzdj4azSDJEeUSVShMpkSCCYC0wF0ilGZdcZSUhMQojkTiJVSBaKZEpUSJecJSwuEhFEg_ARZe7rN1Hq32TV8ZLba1YaNf6nFDMSEYQjQM9_0Pnrq0XYbugUkpwmqVZUJedkrXzvtZlvqxNJep1jlG-KTrfFJ3_FB3w2TayLSqtdvS32QBwBz6N1et_ovLJ-OapC_0GzSWHMw</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Hurtado, Erica</creator><creator>Núñez‐Álvarez, Yaiza</creator><creator>Muñoz, Mar</creator><creator>Gutiérrez‐Caballero, Cristina</creator><creator>Casas, Josefina</creator><creator>Pendás, Alberto M.</creator><creator>Peinado, Miguel A.</creator><creator>Suelves, Mònica</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7095-5804</orcidid></search><sort><creationdate>202102</creationdate><title>HDAC11 is a novel regulator of fatty acid oxidative metabolism in skeletal muscle</title><author>Hurtado, Erica ; Núñez‐Álvarez, Yaiza ; Muñoz, Mar ; Gutiérrez‐Caballero, Cristina ; Casas, Josefina ; Pendás, Alberto M. ; Peinado, Miguel A. ; Suelves, Mònica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5046-4dd87cc0a2a21ea16a0d896c6d9f2230f227c173dc0aedda9daf06b60753b8a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>acylcarnitines</topic><topic>AMP</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>Animals</topic><topic>Carnitine - analogs &amp; derivatives</topic><topic>Carnitine - metabolism</topic><topic>Depletion</topic><topic>Energy metabolism</topic><topic>Energy Metabolism - genetics</topic><topic>Fatigue</topic><topic>fatigue resistance</topic><topic>Fatigue strength</topic><topic>fatty acid oxidation</topic><topic>Fatty acids</topic><topic>Fatty Acids - metabolism</topic><topic>fiber type</topic><topic>Gene Expression Regulation</topic><topic>Glycolysis</topic><topic>Glycolysis - genetics</topic><topic>HDAC11</topic><topic>Histone deacetylase</topic><topic>Histone Deacetylases - genetics</topic><topic>Histone Deacetylases - metabolism</topic><topic>Kinases</topic><topic>Lipid peroxidation</topic><topic>Lipids</topic><topic>Metabolic disorders</topic><topic>Metabolic rate</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mitochondria</topic><topic>Mitochondria, Muscle - metabolism</topic><topic>Muscle Fibers, Skeletal - metabolism</topic><topic>Muscle strength</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscular fatigue</topic><topic>Musculoskeletal system</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxidative metabolism</topic><topic>Protein kinase</topic><topic>Skeletal muscle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hurtado, Erica</creatorcontrib><creatorcontrib>Núñez‐Álvarez, Yaiza</creatorcontrib><creatorcontrib>Muñoz, Mar</creatorcontrib><creatorcontrib>Gutiérrez‐Caballero, Cristina</creatorcontrib><creatorcontrib>Casas, Josefina</creatorcontrib><creatorcontrib>Pendás, Alberto M.</creatorcontrib><creatorcontrib>Peinado, Miguel A.</creatorcontrib><creatorcontrib>Suelves, Mònica</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hurtado, Erica</au><au>Núñez‐Álvarez, Yaiza</au><au>Muñoz, Mar</au><au>Gutiérrez‐Caballero, Cristina</au><au>Casas, Josefina</au><au>Pendás, Alberto M.</au><au>Peinado, Miguel A.</au><au>Suelves, Mònica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HDAC11 is a novel regulator of fatty acid oxidative metabolism in skeletal muscle</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2021-02</date><risdate>2021</risdate><volume>288</volume><issue>3</issue><spage>902</spage><epage>919</epage><pages>902-919</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>Skeletal muscle is the largest tissue in mammalian organisms and is a key determinant of basal metabolic rate and whole‐body energy metabolism. Histone deacetylase 11 (HDAC11) is the only member of the class IV subfamily of HDACs, and it is highly expressed in skeletal muscle, but its role in skeletal muscle physiology has never been investigated. Here, we describe for the first time the consequences of HDAC11 genetic deficiency in skeletal muscle, which results in the improvement of muscle function enhancing fatigue resistance and muscle strength. Loss of HDAC11 had no obvious impact on skeletal muscle structure but increased the number of oxidative myofibers by promoting a glycolytic‐to‐oxidative muscle fiber switch. Unexpectedly, HDAC11 was localized in muscle mitochondria and its deficiency enhanced mitochondrial content. In particular, we showed that HDAC11 depletion increased mitochondrial fatty acid β‐oxidation through activating the AMP‐activated protein kinase‐acetyl‐CoA carboxylase pathway and reducing acylcarnitine levels in vivo, thus providing a mechanistic explanation for the improved muscle strength and fatigue resistance. Overall, our data reveal a unique role of HDAC11 in the maintenance of muscle fiber‐type balance and the mitochondrial lipid oxidation. These findings shed light on the mechanisms governing muscle metabolism and may have implications for chronic muscle metabolic disease management. Schematic representation of histone deacetylase 11 (HDAC11) functions in skeletal muscle tissue. HDAC11 is required for balancing fiber‐type composition and for modulating mitochondrial lipid oxidation in skeletal muscle. Lack of HDAC11 results in enhanced oxidative capacity of muscle tissue, increasing mitochondrial fatty acid β‐oxidation capacity. The functional consequences of HDAC11 deficiency are the improvement of muscle strength and fatigue resistance, indicating a better skeletal muscle performance.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>32563202</pmid><doi>10.1111/febs.15456</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-7095-5804</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-464X
ispartof The FEBS journal, 2021-02, Vol.288 (3), p.902-919
issn 1742-464X
1742-4658
language eng
recordid cdi_proquest_miscellaneous_2415292043
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Free Full-Text Journals in Chemistry
subjects acylcarnitines
AMP
AMP-Activated Protein Kinases - metabolism
Animals
Carnitine - analogs & derivatives
Carnitine - metabolism
Depletion
Energy metabolism
Energy Metabolism - genetics
Fatigue
fatigue resistance
Fatigue strength
fatty acid oxidation
Fatty acids
Fatty Acids - metabolism
fiber type
Gene Expression Regulation
Glycolysis
Glycolysis - genetics
HDAC11
Histone deacetylase
Histone Deacetylases - genetics
Histone Deacetylases - metabolism
Kinases
Lipid peroxidation
Lipids
Metabolic disorders
Metabolic rate
Metabolism
Mice
Mice, Inbred C57BL
Mice, Knockout
Mitochondria
Mitochondria, Muscle - metabolism
Muscle Fibers, Skeletal - metabolism
Muscle strength
Muscle, Skeletal - metabolism
Muscular fatigue
Musculoskeletal system
Oxidation
Oxidation-Reduction
Oxidative metabolism
Protein kinase
Skeletal muscle
title HDAC11 is a novel regulator of fatty acid oxidative metabolism in skeletal muscle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A18%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HDAC11%20is%20a%20novel%20regulator%20of%20fatty%20acid%20oxidative%20metabolism%20in%20skeletal%20muscle&rft.jtitle=The%20FEBS%20journal&rft.au=Hurtado,%20Erica&rft.date=2021-02&rft.volume=288&rft.issue=3&rft.spage=902&rft.epage=919&rft.pages=902-919&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/febs.15456&rft_dat=%3Cproquest_cross%3E2415292043%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2484218989&rft_id=info:pmid/32563202&rfr_iscdi=true