Synergistic oxygen substitution and heterostructure construction in polymeric semiconductors for efficient water splitting

Herein, we present a synergistic oxygen-substitution and heterostructure construction strategy to produce a two-dimensional oxygenated-triazine-heptazine-conjugated carbon nitride nanoribbon (TOH-CN). The TOH-CN was proved to have an internal donor-acceptor heterostructure that could promote interfa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2020-07, Vol.12 (25), p.13484-1349
Hauptverfasser: Chen, Li, Wang, Yuze, Wu, Chongbei, Yu, Guanhang, Yin, Yue, Su, Chenliang, Xie, Jijia, Han, Qing, Qu, Liangti
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1349
container_issue 25
container_start_page 13484
container_title Nanoscale
container_volume 12
creator Chen, Li
Wang, Yuze
Wu, Chongbei
Yu, Guanhang
Yin, Yue
Su, Chenliang
Xie, Jijia
Han, Qing
Qu, Liangti
description Herein, we present a synergistic oxygen-substitution and heterostructure construction strategy to produce a two-dimensional oxygenated-triazine-heptazine-conjugated carbon nitride nanoribbon (TOH-CN). The TOH-CN was proved to have an internal donor-acceptor heterostructure that could promote interfacial charge separation and transport, while the oxygen substitution effect modulated the nanoribbon morphology with increased surface/edge active sites and tuned the electronic structure to extend visible-light absorption as well as to improve band structure alignment. Benefiting from these advantages, the TOH-CN served as an efficient bifunctional photocatalyst for both H 2 and O 2 evolution under visible-light irradiation, exhibiting a 16 times higher photocatalytic H 2 evolution rate than that of its melon-based carbon nitride (g-C 3 N 4 ) counterpart, and a remarkable apparent quantum yield of 7.9% at 420 nm. The O 2 evolution rate was 6 times higher than that of g-C 3 N 4 , even much higher than those of most bifunctional carbon nitride-based photocatalysts. The developed synergistic strategy of oxygen substitution and heterostructure construction will provide an alternative route for the synthesis of efficient polymeric semiconductors toward efficient solar-to-chemical conversion. A synergistic oxygen substitution and heterostructure construction strategy was developed to synthesize oxygenated-triazine-heptazine-conjugated polymer nanoribbons for photocatalytic water splitting.
doi_str_mv 10.1039/d0nr02556a
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_2415288550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2415288550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-8042ffaf02e35cf43d0510749770436e18dc392e2efed764bc78eeb6b74197c23</originalsourceid><addsrcrecordid>eNp90c1LwzAYBvAiCs7pxbsQ8SLCNF9t2uOYnzAU_DiXLn0zM7qkJila_3ozJxM8eEpe3h8PIU-SHBJ8TjArLmpsHKZpmlVbyYBijkeMCbq9uWd8N9nzfoFxVrCMDZLPp96Am2sftET2o5-DQb6bxTF0QVuDKlOjVwjgrA-uk6FzgKQ162EFtEGtbfoluJjgYanjto476zxS1iFQSksNJqD3KsYg3zY6BG3m-8mOqhoPBz_nMHm5vnqe3I6mDzd3k_F0JFPCwijHnCpVKUyBpVJxVuOUYMELITBnGZC8lqygQEFBLTI-kyIHmGUzwUkhJGXD5HSd2zr71oEP5VJ7CU1TGbCdLyknKc3zNMWRnvyhC9s5E1-3UoUgBcmLqM7WSsZP8Q5U2Tq9rFxfElyuaigv8f3jdw3jiI_X2Hm5cb81lW2tojn6z7AvV7KTYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419719189</pqid></control><display><type>article</type><title>Synergistic oxygen substitution and heterostructure construction in polymeric semiconductors for efficient water splitting</title><source>Royal Society Of Chemistry Journals</source><creator>Chen, Li ; Wang, Yuze ; Wu, Chongbei ; Yu, Guanhang ; Yin, Yue ; Su, Chenliang ; Xie, Jijia ; Han, Qing ; Qu, Liangti</creator><creatorcontrib>Chen, Li ; Wang, Yuze ; Wu, Chongbei ; Yu, Guanhang ; Yin, Yue ; Su, Chenliang ; Xie, Jijia ; Han, Qing ; Qu, Liangti</creatorcontrib><description>Herein, we present a synergistic oxygen-substitution and heterostructure construction strategy to produce a two-dimensional oxygenated-triazine-heptazine-conjugated carbon nitride nanoribbon (TOH-CN). The TOH-CN was proved to have an internal donor-acceptor heterostructure that could promote interfacial charge separation and transport, while the oxygen substitution effect modulated the nanoribbon morphology with increased surface/edge active sites and tuned the electronic structure to extend visible-light absorption as well as to improve band structure alignment. Benefiting from these advantages, the TOH-CN served as an efficient bifunctional photocatalyst for both H 2 and O 2 evolution under visible-light irradiation, exhibiting a 16 times higher photocatalytic H 2 evolution rate than that of its melon-based carbon nitride (g-C 3 N 4 ) counterpart, and a remarkable apparent quantum yield of 7.9% at 420 nm. The O 2 evolution rate was 6 times higher than that of g-C 3 N 4 , even much higher than those of most bifunctional carbon nitride-based photocatalysts. The developed synergistic strategy of oxygen substitution and heterostructure construction will provide an alternative route for the synthesis of efficient polymeric semiconductors toward efficient solar-to-chemical conversion. A synergistic oxygen substitution and heterostructure construction strategy was developed to synthesize oxygenated-triazine-heptazine-conjugated polymer nanoribbons for photocatalytic water splitting.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d0nr02556a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carbon ; Carbon nitride ; Charge transport ; Chemical synthesis ; Construction ; Electromagnetic absorption ; Electronic structure ; Heterostructures ; Hydrogen evolution ; Light irradiation ; Morphology ; Oxygen ; Photocatalysis ; Photocatalysts ; Semiconductors ; Substitutes ; Water splitting</subject><ispartof>Nanoscale, 2020-07, Vol.12 (25), p.13484-1349</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-8042ffaf02e35cf43d0510749770436e18dc392e2efed764bc78eeb6b74197c23</citedby><cites>FETCH-LOGICAL-c513t-8042ffaf02e35cf43d0510749770436e18dc392e2efed764bc78eeb6b74197c23</cites><orcidid>0000-0001-5778-094X ; 0000-0002-0161-3816 ; 0000-0003-4609-8915 ; 0000-0002-8453-1938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Wang, Yuze</creatorcontrib><creatorcontrib>Wu, Chongbei</creatorcontrib><creatorcontrib>Yu, Guanhang</creatorcontrib><creatorcontrib>Yin, Yue</creatorcontrib><creatorcontrib>Su, Chenliang</creatorcontrib><creatorcontrib>Xie, Jijia</creatorcontrib><creatorcontrib>Han, Qing</creatorcontrib><creatorcontrib>Qu, Liangti</creatorcontrib><title>Synergistic oxygen substitution and heterostructure construction in polymeric semiconductors for efficient water splitting</title><title>Nanoscale</title><description>Herein, we present a synergistic oxygen-substitution and heterostructure construction strategy to produce a two-dimensional oxygenated-triazine-heptazine-conjugated carbon nitride nanoribbon (TOH-CN). The TOH-CN was proved to have an internal donor-acceptor heterostructure that could promote interfacial charge separation and transport, while the oxygen substitution effect modulated the nanoribbon morphology with increased surface/edge active sites and tuned the electronic structure to extend visible-light absorption as well as to improve band structure alignment. Benefiting from these advantages, the TOH-CN served as an efficient bifunctional photocatalyst for both H 2 and O 2 evolution under visible-light irradiation, exhibiting a 16 times higher photocatalytic H 2 evolution rate than that of its melon-based carbon nitride (g-C 3 N 4 ) counterpart, and a remarkable apparent quantum yield of 7.9% at 420 nm. The O 2 evolution rate was 6 times higher than that of g-C 3 N 4 , even much higher than those of most bifunctional carbon nitride-based photocatalysts. The developed synergistic strategy of oxygen substitution and heterostructure construction will provide an alternative route for the synthesis of efficient polymeric semiconductors toward efficient solar-to-chemical conversion. A synergistic oxygen substitution and heterostructure construction strategy was developed to synthesize oxygenated-triazine-heptazine-conjugated polymer nanoribbons for photocatalytic water splitting.</description><subject>Carbon</subject><subject>Carbon nitride</subject><subject>Charge transport</subject><subject>Chemical synthesis</subject><subject>Construction</subject><subject>Electromagnetic absorption</subject><subject>Electronic structure</subject><subject>Heterostructures</subject><subject>Hydrogen evolution</subject><subject>Light irradiation</subject><subject>Morphology</subject><subject>Oxygen</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Semiconductors</subject><subject>Substitutes</subject><subject>Water splitting</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90c1LwzAYBvAiCs7pxbsQ8SLCNF9t2uOYnzAU_DiXLn0zM7qkJila_3ozJxM8eEpe3h8PIU-SHBJ8TjArLmpsHKZpmlVbyYBijkeMCbq9uWd8N9nzfoFxVrCMDZLPp96Am2sftET2o5-DQb6bxTF0QVuDKlOjVwjgrA-uk6FzgKQ162EFtEGtbfoluJjgYanjto476zxS1iFQSksNJqD3KsYg3zY6BG3m-8mOqhoPBz_nMHm5vnqe3I6mDzd3k_F0JFPCwijHnCpVKUyBpVJxVuOUYMELITBnGZC8lqygQEFBLTI-kyIHmGUzwUkhJGXD5HSd2zr71oEP5VJ7CU1TGbCdLyknKc3zNMWRnvyhC9s5E1-3UoUgBcmLqM7WSsZP8Q5U2Tq9rFxfElyuaigv8f3jdw3jiI_X2Hm5cb81lW2tojn6z7AvV7KTYA</recordid><startdate>20200702</startdate><enddate>20200702</enddate><creator>Chen, Li</creator><creator>Wang, Yuze</creator><creator>Wu, Chongbei</creator><creator>Yu, Guanhang</creator><creator>Yin, Yue</creator><creator>Su, Chenliang</creator><creator>Xie, Jijia</creator><creator>Han, Qing</creator><creator>Qu, Liangti</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5778-094X</orcidid><orcidid>https://orcid.org/0000-0002-0161-3816</orcidid><orcidid>https://orcid.org/0000-0003-4609-8915</orcidid><orcidid>https://orcid.org/0000-0002-8453-1938</orcidid></search><sort><creationdate>20200702</creationdate><title>Synergistic oxygen substitution and heterostructure construction in polymeric semiconductors for efficient water splitting</title><author>Chen, Li ; Wang, Yuze ; Wu, Chongbei ; Yu, Guanhang ; Yin, Yue ; Su, Chenliang ; Xie, Jijia ; Han, Qing ; Qu, Liangti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-8042ffaf02e35cf43d0510749770436e18dc392e2efed764bc78eeb6b74197c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon</topic><topic>Carbon nitride</topic><topic>Charge transport</topic><topic>Chemical synthesis</topic><topic>Construction</topic><topic>Electromagnetic absorption</topic><topic>Electronic structure</topic><topic>Heterostructures</topic><topic>Hydrogen evolution</topic><topic>Light irradiation</topic><topic>Morphology</topic><topic>Oxygen</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Semiconductors</topic><topic>Substitutes</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Wang, Yuze</creatorcontrib><creatorcontrib>Wu, Chongbei</creatorcontrib><creatorcontrib>Yu, Guanhang</creatorcontrib><creatorcontrib>Yin, Yue</creatorcontrib><creatorcontrib>Su, Chenliang</creatorcontrib><creatorcontrib>Xie, Jijia</creatorcontrib><creatorcontrib>Han, Qing</creatorcontrib><creatorcontrib>Qu, Liangti</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Li</au><au>Wang, Yuze</au><au>Wu, Chongbei</au><au>Yu, Guanhang</au><au>Yin, Yue</au><au>Su, Chenliang</au><au>Xie, Jijia</au><au>Han, Qing</au><au>Qu, Liangti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic oxygen substitution and heterostructure construction in polymeric semiconductors for efficient water splitting</atitle><jtitle>Nanoscale</jtitle><date>2020-07-02</date><risdate>2020</risdate><volume>12</volume><issue>25</issue><spage>13484</spage><epage>1349</epage><pages>13484-1349</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Herein, we present a synergistic oxygen-substitution and heterostructure construction strategy to produce a two-dimensional oxygenated-triazine-heptazine-conjugated carbon nitride nanoribbon (TOH-CN). The TOH-CN was proved to have an internal donor-acceptor heterostructure that could promote interfacial charge separation and transport, while the oxygen substitution effect modulated the nanoribbon morphology with increased surface/edge active sites and tuned the electronic structure to extend visible-light absorption as well as to improve band structure alignment. Benefiting from these advantages, the TOH-CN served as an efficient bifunctional photocatalyst for both H 2 and O 2 evolution under visible-light irradiation, exhibiting a 16 times higher photocatalytic H 2 evolution rate than that of its melon-based carbon nitride (g-C 3 N 4 ) counterpart, and a remarkable apparent quantum yield of 7.9% at 420 nm. The O 2 evolution rate was 6 times higher than that of g-C 3 N 4 , even much higher than those of most bifunctional carbon nitride-based photocatalysts. The developed synergistic strategy of oxygen substitution and heterostructure construction will provide an alternative route for the synthesis of efficient polymeric semiconductors toward efficient solar-to-chemical conversion. A synergistic oxygen substitution and heterostructure construction strategy was developed to synthesize oxygenated-triazine-heptazine-conjugated polymer nanoribbons for photocatalytic water splitting.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0nr02556a</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5778-094X</orcidid><orcidid>https://orcid.org/0000-0002-0161-3816</orcidid><orcidid>https://orcid.org/0000-0003-4609-8915</orcidid><orcidid>https://orcid.org/0000-0002-8453-1938</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2020-07, Vol.12 (25), p.13484-1349
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_2415288550
source Royal Society Of Chemistry Journals
subjects Carbon
Carbon nitride
Charge transport
Chemical synthesis
Construction
Electromagnetic absorption
Electronic structure
Heterostructures
Hydrogen evolution
Light irradiation
Morphology
Oxygen
Photocatalysis
Photocatalysts
Semiconductors
Substitutes
Water splitting
title Synergistic oxygen substitution and heterostructure construction in polymeric semiconductors for efficient water splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A03%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20oxygen%20substitution%20and%20heterostructure%20construction%20in%20polymeric%20semiconductors%20for%20efficient%20water%20splitting&rft.jtitle=Nanoscale&rft.au=Chen,%20Li&rft.date=2020-07-02&rft.volume=12&rft.issue=25&rft.spage=13484&rft.epage=1349&rft.pages=13484-1349&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d0nr02556a&rft_dat=%3Cproquest_rsc_p%3E2415288550%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419719189&rft_id=info:pmid/&rfr_iscdi=true