Synergistic oxygen substitution and heterostructure construction in polymeric semiconductors for efficient water splitting
Herein, we present a synergistic oxygen-substitution and heterostructure construction strategy to produce a two-dimensional oxygenated-triazine-heptazine-conjugated carbon nitride nanoribbon (TOH-CN). The TOH-CN was proved to have an internal donor-acceptor heterostructure that could promote interfa...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2020-07, Vol.12 (25), p.13484-1349 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1349 |
---|---|
container_issue | 25 |
container_start_page | 13484 |
container_title | Nanoscale |
container_volume | 12 |
creator | Chen, Li Wang, Yuze Wu, Chongbei Yu, Guanhang Yin, Yue Su, Chenliang Xie, Jijia Han, Qing Qu, Liangti |
description | Herein, we present a synergistic oxygen-substitution and heterostructure construction strategy to produce a two-dimensional oxygenated-triazine-heptazine-conjugated carbon nitride nanoribbon (TOH-CN). The TOH-CN was proved to have an internal donor-acceptor heterostructure that could promote interfacial charge separation and transport, while the oxygen substitution effect modulated the nanoribbon morphology with increased surface/edge active sites and tuned the electronic structure to extend visible-light absorption as well as to improve band structure alignment. Benefiting from these advantages, the TOH-CN served as an efficient bifunctional photocatalyst for both H
2
and O
2
evolution under visible-light irradiation, exhibiting a 16 times higher photocatalytic H
2
evolution rate than that of its melon-based carbon nitride (g-C
3
N
4
) counterpart, and a remarkable apparent quantum yield of 7.9% at 420 nm. The O
2
evolution rate was 6 times higher than that of g-C
3
N
4
, even much higher than those of most bifunctional carbon nitride-based photocatalysts. The developed synergistic strategy of oxygen substitution and heterostructure construction will provide an alternative route for the synthesis of efficient polymeric semiconductors toward efficient solar-to-chemical conversion.
A synergistic oxygen substitution and heterostructure construction strategy was developed to synthesize oxygenated-triazine-heptazine-conjugated polymer nanoribbons for photocatalytic water splitting. |
doi_str_mv | 10.1039/d0nr02556a |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_2415288550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2415288550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-8042ffaf02e35cf43d0510749770436e18dc392e2efed764bc78eeb6b74197c23</originalsourceid><addsrcrecordid>eNp90c1LwzAYBvAiCs7pxbsQ8SLCNF9t2uOYnzAU_DiXLn0zM7qkJila_3ozJxM8eEpe3h8PIU-SHBJ8TjArLmpsHKZpmlVbyYBijkeMCbq9uWd8N9nzfoFxVrCMDZLPp96Am2sftET2o5-DQb6bxTF0QVuDKlOjVwjgrA-uk6FzgKQ162EFtEGtbfoluJjgYanjto476zxS1iFQSksNJqD3KsYg3zY6BG3m-8mOqhoPBz_nMHm5vnqe3I6mDzd3k_F0JFPCwijHnCpVKUyBpVJxVuOUYMELITBnGZC8lqygQEFBLTI-kyIHmGUzwUkhJGXD5HSd2zr71oEP5VJ7CU1TGbCdLyknKc3zNMWRnvyhC9s5E1-3UoUgBcmLqM7WSsZP8Q5U2Tq9rFxfElyuaigv8f3jdw3jiI_X2Hm5cb81lW2tojn6z7AvV7KTYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419719189</pqid></control><display><type>article</type><title>Synergistic oxygen substitution and heterostructure construction in polymeric semiconductors for efficient water splitting</title><source>Royal Society Of Chemistry Journals</source><creator>Chen, Li ; Wang, Yuze ; Wu, Chongbei ; Yu, Guanhang ; Yin, Yue ; Su, Chenliang ; Xie, Jijia ; Han, Qing ; Qu, Liangti</creator><creatorcontrib>Chen, Li ; Wang, Yuze ; Wu, Chongbei ; Yu, Guanhang ; Yin, Yue ; Su, Chenliang ; Xie, Jijia ; Han, Qing ; Qu, Liangti</creatorcontrib><description>Herein, we present a synergistic oxygen-substitution and heterostructure construction strategy to produce a two-dimensional oxygenated-triazine-heptazine-conjugated carbon nitride nanoribbon (TOH-CN). The TOH-CN was proved to have an internal donor-acceptor heterostructure that could promote interfacial charge separation and transport, while the oxygen substitution effect modulated the nanoribbon morphology with increased surface/edge active sites and tuned the electronic structure to extend visible-light absorption as well as to improve band structure alignment. Benefiting from these advantages, the TOH-CN served as an efficient bifunctional photocatalyst for both H
2
and O
2
evolution under visible-light irradiation, exhibiting a 16 times higher photocatalytic H
2
evolution rate than that of its melon-based carbon nitride (g-C
3
N
4
) counterpart, and a remarkable apparent quantum yield of 7.9% at 420 nm. The O
2
evolution rate was 6 times higher than that of g-C
3
N
4
, even much higher than those of most bifunctional carbon nitride-based photocatalysts. The developed synergistic strategy of oxygen substitution and heterostructure construction will provide an alternative route for the synthesis of efficient polymeric semiconductors toward efficient solar-to-chemical conversion.
A synergistic oxygen substitution and heterostructure construction strategy was developed to synthesize oxygenated-triazine-heptazine-conjugated polymer nanoribbons for photocatalytic water splitting.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d0nr02556a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carbon ; Carbon nitride ; Charge transport ; Chemical synthesis ; Construction ; Electromagnetic absorption ; Electronic structure ; Heterostructures ; Hydrogen evolution ; Light irradiation ; Morphology ; Oxygen ; Photocatalysis ; Photocatalysts ; Semiconductors ; Substitutes ; Water splitting</subject><ispartof>Nanoscale, 2020-07, Vol.12 (25), p.13484-1349</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-8042ffaf02e35cf43d0510749770436e18dc392e2efed764bc78eeb6b74197c23</citedby><cites>FETCH-LOGICAL-c513t-8042ffaf02e35cf43d0510749770436e18dc392e2efed764bc78eeb6b74197c23</cites><orcidid>0000-0001-5778-094X ; 0000-0002-0161-3816 ; 0000-0003-4609-8915 ; 0000-0002-8453-1938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Wang, Yuze</creatorcontrib><creatorcontrib>Wu, Chongbei</creatorcontrib><creatorcontrib>Yu, Guanhang</creatorcontrib><creatorcontrib>Yin, Yue</creatorcontrib><creatorcontrib>Su, Chenliang</creatorcontrib><creatorcontrib>Xie, Jijia</creatorcontrib><creatorcontrib>Han, Qing</creatorcontrib><creatorcontrib>Qu, Liangti</creatorcontrib><title>Synergistic oxygen substitution and heterostructure construction in polymeric semiconductors for efficient water splitting</title><title>Nanoscale</title><description>Herein, we present a synergistic oxygen-substitution and heterostructure construction strategy to produce a two-dimensional oxygenated-triazine-heptazine-conjugated carbon nitride nanoribbon (TOH-CN). The TOH-CN was proved to have an internal donor-acceptor heterostructure that could promote interfacial charge separation and transport, while the oxygen substitution effect modulated the nanoribbon morphology with increased surface/edge active sites and tuned the electronic structure to extend visible-light absorption as well as to improve band structure alignment. Benefiting from these advantages, the TOH-CN served as an efficient bifunctional photocatalyst for both H
2
and O
2
evolution under visible-light irradiation, exhibiting a 16 times higher photocatalytic H
2
evolution rate than that of its melon-based carbon nitride (g-C
3
N
4
) counterpart, and a remarkable apparent quantum yield of 7.9% at 420 nm. The O
2
evolution rate was 6 times higher than that of g-C
3
N
4
, even much higher than those of most bifunctional carbon nitride-based photocatalysts. The developed synergistic strategy of oxygen substitution and heterostructure construction will provide an alternative route for the synthesis of efficient polymeric semiconductors toward efficient solar-to-chemical conversion.
A synergistic oxygen substitution and heterostructure construction strategy was developed to synthesize oxygenated-triazine-heptazine-conjugated polymer nanoribbons for photocatalytic water splitting.</description><subject>Carbon</subject><subject>Carbon nitride</subject><subject>Charge transport</subject><subject>Chemical synthesis</subject><subject>Construction</subject><subject>Electromagnetic absorption</subject><subject>Electronic structure</subject><subject>Heterostructures</subject><subject>Hydrogen evolution</subject><subject>Light irradiation</subject><subject>Morphology</subject><subject>Oxygen</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Semiconductors</subject><subject>Substitutes</subject><subject>Water splitting</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90c1LwzAYBvAiCs7pxbsQ8SLCNF9t2uOYnzAU_DiXLn0zM7qkJila_3ozJxM8eEpe3h8PIU-SHBJ8TjArLmpsHKZpmlVbyYBijkeMCbq9uWd8N9nzfoFxVrCMDZLPp96Am2sftET2o5-DQb6bxTF0QVuDKlOjVwjgrA-uk6FzgKQ162EFtEGtbfoluJjgYanjto476zxS1iFQSksNJqD3KsYg3zY6BG3m-8mOqhoPBz_nMHm5vnqe3I6mDzd3k_F0JFPCwijHnCpVKUyBpVJxVuOUYMELITBnGZC8lqygQEFBLTI-kyIHmGUzwUkhJGXD5HSd2zr71oEP5VJ7CU1TGbCdLyknKc3zNMWRnvyhC9s5E1-3UoUgBcmLqM7WSsZP8Q5U2Tq9rFxfElyuaigv8f3jdw3jiI_X2Hm5cb81lW2tojn6z7AvV7KTYA</recordid><startdate>20200702</startdate><enddate>20200702</enddate><creator>Chen, Li</creator><creator>Wang, Yuze</creator><creator>Wu, Chongbei</creator><creator>Yu, Guanhang</creator><creator>Yin, Yue</creator><creator>Su, Chenliang</creator><creator>Xie, Jijia</creator><creator>Han, Qing</creator><creator>Qu, Liangti</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5778-094X</orcidid><orcidid>https://orcid.org/0000-0002-0161-3816</orcidid><orcidid>https://orcid.org/0000-0003-4609-8915</orcidid><orcidid>https://orcid.org/0000-0002-8453-1938</orcidid></search><sort><creationdate>20200702</creationdate><title>Synergistic oxygen substitution and heterostructure construction in polymeric semiconductors for efficient water splitting</title><author>Chen, Li ; Wang, Yuze ; Wu, Chongbei ; Yu, Guanhang ; Yin, Yue ; Su, Chenliang ; Xie, Jijia ; Han, Qing ; Qu, Liangti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-8042ffaf02e35cf43d0510749770436e18dc392e2efed764bc78eeb6b74197c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon</topic><topic>Carbon nitride</topic><topic>Charge transport</topic><topic>Chemical synthesis</topic><topic>Construction</topic><topic>Electromagnetic absorption</topic><topic>Electronic structure</topic><topic>Heterostructures</topic><topic>Hydrogen evolution</topic><topic>Light irradiation</topic><topic>Morphology</topic><topic>Oxygen</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Semiconductors</topic><topic>Substitutes</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Wang, Yuze</creatorcontrib><creatorcontrib>Wu, Chongbei</creatorcontrib><creatorcontrib>Yu, Guanhang</creatorcontrib><creatorcontrib>Yin, Yue</creatorcontrib><creatorcontrib>Su, Chenliang</creatorcontrib><creatorcontrib>Xie, Jijia</creatorcontrib><creatorcontrib>Han, Qing</creatorcontrib><creatorcontrib>Qu, Liangti</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Li</au><au>Wang, Yuze</au><au>Wu, Chongbei</au><au>Yu, Guanhang</au><au>Yin, Yue</au><au>Su, Chenliang</au><au>Xie, Jijia</au><au>Han, Qing</au><au>Qu, Liangti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic oxygen substitution and heterostructure construction in polymeric semiconductors for efficient water splitting</atitle><jtitle>Nanoscale</jtitle><date>2020-07-02</date><risdate>2020</risdate><volume>12</volume><issue>25</issue><spage>13484</spage><epage>1349</epage><pages>13484-1349</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Herein, we present a synergistic oxygen-substitution and heterostructure construction strategy to produce a two-dimensional oxygenated-triazine-heptazine-conjugated carbon nitride nanoribbon (TOH-CN). The TOH-CN was proved to have an internal donor-acceptor heterostructure that could promote interfacial charge separation and transport, while the oxygen substitution effect modulated the nanoribbon morphology with increased surface/edge active sites and tuned the electronic structure to extend visible-light absorption as well as to improve band structure alignment. Benefiting from these advantages, the TOH-CN served as an efficient bifunctional photocatalyst for both H
2
and O
2
evolution under visible-light irradiation, exhibiting a 16 times higher photocatalytic H
2
evolution rate than that of its melon-based carbon nitride (g-C
3
N
4
) counterpart, and a remarkable apparent quantum yield of 7.9% at 420 nm. The O
2
evolution rate was 6 times higher than that of g-C
3
N
4
, even much higher than those of most bifunctional carbon nitride-based photocatalysts. The developed synergistic strategy of oxygen substitution and heterostructure construction will provide an alternative route for the synthesis of efficient polymeric semiconductors toward efficient solar-to-chemical conversion.
A synergistic oxygen substitution and heterostructure construction strategy was developed to synthesize oxygenated-triazine-heptazine-conjugated polymer nanoribbons for photocatalytic water splitting.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0nr02556a</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5778-094X</orcidid><orcidid>https://orcid.org/0000-0002-0161-3816</orcidid><orcidid>https://orcid.org/0000-0003-4609-8915</orcidid><orcidid>https://orcid.org/0000-0002-8453-1938</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2020-07, Vol.12 (25), p.13484-1349 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_2415288550 |
source | Royal Society Of Chemistry Journals |
subjects | Carbon Carbon nitride Charge transport Chemical synthesis Construction Electromagnetic absorption Electronic structure Heterostructures Hydrogen evolution Light irradiation Morphology Oxygen Photocatalysis Photocatalysts Semiconductors Substitutes Water splitting |
title | Synergistic oxygen substitution and heterostructure construction in polymeric semiconductors for efficient water splitting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A03%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20oxygen%20substitution%20and%20heterostructure%20construction%20in%20polymeric%20semiconductors%20for%20efficient%20water%20splitting&rft.jtitle=Nanoscale&rft.au=Chen,%20Li&rft.date=2020-07-02&rft.volume=12&rft.issue=25&rft.spage=13484&rft.epage=1349&rft.pages=13484-1349&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d0nr02556a&rft_dat=%3Cproquest_rsc_p%3E2415288550%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419719189&rft_id=info:pmid/&rfr_iscdi=true |