Simplified perfusion fraction from diffusion-weighted imaging in preoperative prediction of IDH1 mutation in WHO grade II–III gliomas: comparison with dynamic contrast-enhanced and intravoxel incoherent motion MRI

Background. Effect of isocitrate dehydrogenase 1 (IDH1) mutation in neovascularization might be linked with tissue perfusion in gliomas. At present, the need of injection of contrast agent and the increasing scanning time limit the application of perfusion techniques. We used a simplified intravoxel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiology and oncology 2020-06, Vol.54 (3), p.301-310
Hauptverfasser: Wang, Xiaoqing, Cao, Mengqiu, Chen, Hongjin, Ge, Jianwei, Suo, Shiteng, Zhou, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 310
container_issue 3
container_start_page 301
container_title Radiology and oncology
container_volume 54
creator Wang, Xiaoqing
Cao, Mengqiu
Chen, Hongjin
Ge, Jianwei
Suo, Shiteng
Zhou, Yan
description Background. Effect of isocitrate dehydrogenase 1 (IDH1) mutation in neovascularization might be linked with tissue perfusion in gliomas. At present, the need of injection of contrast agent and the increasing scanning time limit the application of perfusion techniques. We used a simplified intravoxel incoherent motion (IVIM)-derived perfusion fraction (SPF) calculated from diffusion-weighted imaging (DWI) using only three b-values to quantitatively assess IDH1-linked tissue perfusion changes in WHO grade II-III gliomas (LGGs). Additionally, by comparing accuracy with dynamic contrast-enhanced (DCE) and full IVIM MRI, we tried to find the optimal imaging markers to predict IDH1 mutation status. Patients and methods. Thirty patients were prospectively examined using DCE and multi-b-value DWI. All parameters were compared between the IDH1 mutant and wild-type LGGs using the Mann-Whitney U test, including the DCE MRI-derived K-trans, V-e and V-p, the conventional apparent diffusion coefficient (ADC(0,1000)), IVIM-derived perfusion fraction (f), diffusion coefficient (D) and pseudo-diffusion coefficient (D*), SPF. We evaluated the diagnostic performance by receiver operating characteristic (ROC) analysis. Results. Significant differences were detected between WHO grade II-III gliomas for all perfusion and diffusion parameters (P < 0.05). When compared to IDH1 mutant LGGs, IDH1 wild-type LGGs exhibited significantly higher perfusion metrics (P < 0.05) and lower diffusion metrics (P < 0.05). Among all parameters, SPF showed a higher diagnostic performance (area under the curve 0.861), with 94.4% sensitivity and 75% specificity. Conclusions. DWI, DCE and IVIM MRI may noninvasively help discriminate IDHI mutation statuses in LGGs. Specifically, simplified DWI-derived SPF showed a superior diagnostic performance.
doi_str_mv 10.2478/raon-2020-0037
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2415287734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_657800d3e2454555a67e9c897b014d0d</doaj_id><sourcerecordid>2429338594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-63cd8e2ed959aa1f437baa9409bab58081f11e77dec110985bde1fb038b3dcf63</originalsourceid><addsrcrecordid>eNqNUstu1DAUjRCIlsKWdSQ2SCjFjuOxjRASGh6NVFSJh1hajn2TcZXYU8dp6Y5_4OPY8yU4k1FREQtWuTn3nOPr65NljzE6LivGnwflXVGiEhUIEXYnO8SU44KUiN1NNcE8NYU4yB6M4zlCdFWW_H52QEpKBWbsMPv5yQ7b3rYWTL6F0E6j9S5vg9JxKfyQG9sueHEFttvERLWD6qzrcuvybQCflCraS5h_jF2kvs3rNyc4H6aodkDifj05y7ugDOR1_ev7j7qu8663flDji1z7YauCHRPzysZNbq6dGqxOuItBjbEAt1FOp8OVSwPM4KX_Bn0qtd9AABfzwe9O-vCxfpjda1U_wqP99yj78u7t5_VJcXr2vl6_Pi00xVUsVkQbDiUYQYVSuK0Ia5QSFRKNaihHHLcYA2MGNMZIcNoYwG2DCG-I0e2KHGX14mu8OpfbkBYTrqVXVu4AHzqpQrS6B7mijCNkCJQVrSilasVAaC5Yg3BlUuMoe7V4badmAKNhvmN_y_R2x9mN7PylZGleKngyeLo3CP5igjHKwY4a-l458NMoywrTkjNGqkR98hf13E_BpVUlVikI4VTMrOOFpYMfxwDtzTAYyTl_cs6fnPMn5_wlwbNFcAWNb0dtIb3YjQilBNJVVVVpDwjNbP7_7LVdcrT2k4tJ-nIvVX2EYKAL03Uq_lzj3xPSihCEyW_r7Qfm</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429338594</pqid></control><display><type>article</type><title>Simplified perfusion fraction from diffusion-weighted imaging in preoperative prediction of IDH1 mutation in WHO grade II–III gliomas: comparison with dynamic contrast-enhanced and intravoxel incoherent motion MRI</title><source>De Gruyter Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><creator>Wang, Xiaoqing ; Cao, Mengqiu ; Chen, Hongjin ; Ge, Jianwei ; Suo, Shiteng ; Zhou, Yan</creator><creatorcontrib>Wang, Xiaoqing ; Cao, Mengqiu ; Chen, Hongjin ; Ge, Jianwei ; Suo, Shiteng ; Zhou, Yan</creatorcontrib><description>Background. Effect of isocitrate dehydrogenase 1 (IDH1) mutation in neovascularization might be linked with tissue perfusion in gliomas. At present, the need of injection of contrast agent and the increasing scanning time limit the application of perfusion techniques. We used a simplified intravoxel incoherent motion (IVIM)-derived perfusion fraction (SPF) calculated from diffusion-weighted imaging (DWI) using only three b-values to quantitatively assess IDH1-linked tissue perfusion changes in WHO grade II-III gliomas (LGGs). Additionally, by comparing accuracy with dynamic contrast-enhanced (DCE) and full IVIM MRI, we tried to find the optimal imaging markers to predict IDH1 mutation status. Patients and methods. Thirty patients were prospectively examined using DCE and multi-b-value DWI. All parameters were compared between the IDH1 mutant and wild-type LGGs using the Mann-Whitney U test, including the DCE MRI-derived K-trans, V-e and V-p, the conventional apparent diffusion coefficient (ADC(0,1000)), IVIM-derived perfusion fraction (f), diffusion coefficient (D) and pseudo-diffusion coefficient (D*), SPF. We evaluated the diagnostic performance by receiver operating characteristic (ROC) analysis. Results. Significant differences were detected between WHO grade II-III gliomas for all perfusion and diffusion parameters (P &lt; 0.05). When compared to IDH1 mutant LGGs, IDH1 wild-type LGGs exhibited significantly higher perfusion metrics (P &lt; 0.05) and lower diffusion metrics (P &lt; 0.05). Among all parameters, SPF showed a higher diagnostic performance (area under the curve 0.861), with 94.4% sensitivity and 75% specificity. Conclusions. DWI, DCE and IVIM MRI may noninvasively help discriminate IDHI mutation statuses in LGGs. Specifically, simplified DWI-derived SPF showed a superior diagnostic performance.</description><identifier>ISSN: 1318-2099</identifier><identifier>ISSN: 1581-3207</identifier><identifier>EISSN: 1581-3207</identifier><identifier>EISSN: 0485-893X</identifier><identifier>DOI: 10.2478/raon-2020-0037</identifier><identifier>PMID: 32559177</identifier><language>eng</language><publisher>BERLIN: Sciendo</publisher><subject>2016 WHO CNS tumor classification ; Contrast agents ; Diagnostic systems ; Diffusion ; Diffusion coefficient ; diffusion-weighted MRI ; dynamic contrast-enhanced MRI ; Glioma ; glioma perfusion ; idh1 mutation ; intravoxel incoherent motion ; Life Sciences &amp; Biomedicine ; Magnetic resonance imaging ; Mathematical analysis ; Medical imaging ; Mutants ; Mutation ; Oncology ; Parameters ; Performance evaluation ; Perfusion ; Radiology, Nuclear Medicine &amp; Medical Imaging ; Science &amp; Technology ; Vascularization</subject><ispartof>Radiology and oncology, 2020-06, Vol.54 (3), p.301-310</ispartof><rights>2020. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Xiaoqing Wang, Mengqiu Cao, Hongjin Chen, Jianwei Ge, Shiteng Suo, Yan Zhou, published by Sciendo 2020 Xiaoqing Wang, Mengqiu Cao, Hongjin Chen, Jianwei Ge, Shiteng Suo, Yan Zhou, published by Sciendo</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>11</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000556444800007</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c514t-63cd8e2ed959aa1f437baa9409bab58081f11e77dec110985bde1fb038b3dcf63</citedby><cites>FETCH-LOGICAL-c514t-63cd8e2ed959aa1f437baa9409bab58081f11e77dec110985bde1fb038b3dcf63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7409598/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7409598/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,28253,53796,53798,76169,76170</link.rule.ids></links><search><creatorcontrib>Wang, Xiaoqing</creatorcontrib><creatorcontrib>Cao, Mengqiu</creatorcontrib><creatorcontrib>Chen, Hongjin</creatorcontrib><creatorcontrib>Ge, Jianwei</creatorcontrib><creatorcontrib>Suo, Shiteng</creatorcontrib><creatorcontrib>Zhou, Yan</creatorcontrib><title>Simplified perfusion fraction from diffusion-weighted imaging in preoperative prediction of IDH1 mutation in WHO grade II–III gliomas: comparison with dynamic contrast-enhanced and intravoxel incoherent motion MRI</title><title>Radiology and oncology</title><addtitle>RADIOL ONCOL</addtitle><description>Background. Effect of isocitrate dehydrogenase 1 (IDH1) mutation in neovascularization might be linked with tissue perfusion in gliomas. At present, the need of injection of contrast agent and the increasing scanning time limit the application of perfusion techniques. We used a simplified intravoxel incoherent motion (IVIM)-derived perfusion fraction (SPF) calculated from diffusion-weighted imaging (DWI) using only three b-values to quantitatively assess IDH1-linked tissue perfusion changes in WHO grade II-III gliomas (LGGs). Additionally, by comparing accuracy with dynamic contrast-enhanced (DCE) and full IVIM MRI, we tried to find the optimal imaging markers to predict IDH1 mutation status. Patients and methods. Thirty patients were prospectively examined using DCE and multi-b-value DWI. All parameters were compared between the IDH1 mutant and wild-type LGGs using the Mann-Whitney U test, including the DCE MRI-derived K-trans, V-e and V-p, the conventional apparent diffusion coefficient (ADC(0,1000)), IVIM-derived perfusion fraction (f), diffusion coefficient (D) and pseudo-diffusion coefficient (D*), SPF. We evaluated the diagnostic performance by receiver operating characteristic (ROC) analysis. Results. Significant differences were detected between WHO grade II-III gliomas for all perfusion and diffusion parameters (P &lt; 0.05). When compared to IDH1 mutant LGGs, IDH1 wild-type LGGs exhibited significantly higher perfusion metrics (P &lt; 0.05) and lower diffusion metrics (P &lt; 0.05). Among all parameters, SPF showed a higher diagnostic performance (area under the curve 0.861), with 94.4% sensitivity and 75% specificity. Conclusions. DWI, DCE and IVIM MRI may noninvasively help discriminate IDHI mutation statuses in LGGs. Specifically, simplified DWI-derived SPF showed a superior diagnostic performance.</description><subject>2016 WHO CNS tumor classification</subject><subject>Contrast agents</subject><subject>Diagnostic systems</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>diffusion-weighted MRI</subject><subject>dynamic contrast-enhanced MRI</subject><subject>Glioma</subject><subject>glioma perfusion</subject><subject>idh1 mutation</subject><subject>intravoxel incoherent motion</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical analysis</subject><subject>Medical imaging</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Oncology</subject><subject>Parameters</subject><subject>Performance evaluation</subject><subject>Perfusion</subject><subject>Radiology, Nuclear Medicine &amp; Medical Imaging</subject><subject>Science &amp; Technology</subject><subject>Vascularization</subject><issn>1318-2099</issn><issn>1581-3207</issn><issn>1581-3207</issn><issn>0485-893X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNUstu1DAUjRCIlsKWdSQ2SCjFjuOxjRASGh6NVFSJh1hajn2TcZXYU8dp6Y5_4OPY8yU4k1FREQtWuTn3nOPr65NljzE6LivGnwflXVGiEhUIEXYnO8SU44KUiN1NNcE8NYU4yB6M4zlCdFWW_H52QEpKBWbsMPv5yQ7b3rYWTL6F0E6j9S5vg9JxKfyQG9sueHEFttvERLWD6qzrcuvybQCflCraS5h_jF2kvs3rNyc4H6aodkDifj05y7ugDOR1_ev7j7qu8663flDji1z7YauCHRPzysZNbq6dGqxOuItBjbEAt1FOp8OVSwPM4KX_Bn0qtd9AABfzwe9O-vCxfpjda1U_wqP99yj78u7t5_VJcXr2vl6_Pi00xVUsVkQbDiUYQYVSuK0Ia5QSFRKNaihHHLcYA2MGNMZIcNoYwG2DCG-I0e2KHGX14mu8OpfbkBYTrqVXVu4AHzqpQrS6B7mijCNkCJQVrSilasVAaC5Yg3BlUuMoe7V4badmAKNhvmN_y_R2x9mN7PylZGleKngyeLo3CP5igjHKwY4a-l458NMoywrTkjNGqkR98hf13E_BpVUlVikI4VTMrOOFpYMfxwDtzTAYyTl_cs6fnPMn5_wlwbNFcAWNb0dtIb3YjQilBNJVVVVpDwjNbP7_7LVdcrT2k4tJ-nIvVX2EYKAL03Uq_lzj3xPSihCEyW_r7Qfm</recordid><startdate>20200619</startdate><enddate>20200619</enddate><creator>Wang, Xiaoqing</creator><creator>Cao, Mengqiu</creator><creator>Chen, Hongjin</creator><creator>Ge, Jianwei</creator><creator>Suo, Shiteng</creator><creator>Zhou, Yan</creator><general>Sciendo</general><general>Walter De Gruyter</general><general>De Gruyter Poland</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TO</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20200619</creationdate><title>Simplified perfusion fraction from diffusion-weighted imaging in preoperative prediction of IDH1 mutation in WHO grade II–III gliomas: comparison with dynamic contrast-enhanced and intravoxel incoherent motion MRI</title><author>Wang, Xiaoqing ; Cao, Mengqiu ; Chen, Hongjin ; Ge, Jianwei ; Suo, Shiteng ; Zhou, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-63cd8e2ed959aa1f437baa9409bab58081f11e77dec110985bde1fb038b3dcf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>2016 WHO CNS tumor classification</topic><topic>Contrast agents</topic><topic>Diagnostic systems</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>diffusion-weighted MRI</topic><topic>dynamic contrast-enhanced MRI</topic><topic>Glioma</topic><topic>glioma perfusion</topic><topic>idh1 mutation</topic><topic>intravoxel incoherent motion</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical analysis</topic><topic>Medical imaging</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Oncology</topic><topic>Parameters</topic><topic>Performance evaluation</topic><topic>Perfusion</topic><topic>Radiology, Nuclear Medicine &amp; Medical Imaging</topic><topic>Science &amp; Technology</topic><topic>Vascularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaoqing</creatorcontrib><creatorcontrib>Cao, Mengqiu</creatorcontrib><creatorcontrib>Chen, Hongjin</creatorcontrib><creatorcontrib>Ge, Jianwei</creatorcontrib><creatorcontrib>Suo, Shiteng</creatorcontrib><creatorcontrib>Zhou, Yan</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Radiology and oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiaoqing</au><au>Cao, Mengqiu</au><au>Chen, Hongjin</au><au>Ge, Jianwei</au><au>Suo, Shiteng</au><au>Zhou, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simplified perfusion fraction from diffusion-weighted imaging in preoperative prediction of IDH1 mutation in WHO grade II–III gliomas: comparison with dynamic contrast-enhanced and intravoxel incoherent motion MRI</atitle><jtitle>Radiology and oncology</jtitle><stitle>RADIOL ONCOL</stitle><date>2020-06-19</date><risdate>2020</risdate><volume>54</volume><issue>3</issue><spage>301</spage><epage>310</epage><pages>301-310</pages><issn>1318-2099</issn><issn>1581-3207</issn><eissn>1581-3207</eissn><eissn>0485-893X</eissn><abstract>Background. Effect of isocitrate dehydrogenase 1 (IDH1) mutation in neovascularization might be linked with tissue perfusion in gliomas. At present, the need of injection of contrast agent and the increasing scanning time limit the application of perfusion techniques. We used a simplified intravoxel incoherent motion (IVIM)-derived perfusion fraction (SPF) calculated from diffusion-weighted imaging (DWI) using only three b-values to quantitatively assess IDH1-linked tissue perfusion changes in WHO grade II-III gliomas (LGGs). Additionally, by comparing accuracy with dynamic contrast-enhanced (DCE) and full IVIM MRI, we tried to find the optimal imaging markers to predict IDH1 mutation status. Patients and methods. Thirty patients were prospectively examined using DCE and multi-b-value DWI. All parameters were compared between the IDH1 mutant and wild-type LGGs using the Mann-Whitney U test, including the DCE MRI-derived K-trans, V-e and V-p, the conventional apparent diffusion coefficient (ADC(0,1000)), IVIM-derived perfusion fraction (f), diffusion coefficient (D) and pseudo-diffusion coefficient (D*), SPF. We evaluated the diagnostic performance by receiver operating characteristic (ROC) analysis. Results. Significant differences were detected between WHO grade II-III gliomas for all perfusion and diffusion parameters (P &lt; 0.05). When compared to IDH1 mutant LGGs, IDH1 wild-type LGGs exhibited significantly higher perfusion metrics (P &lt; 0.05) and lower diffusion metrics (P &lt; 0.05). Among all parameters, SPF showed a higher diagnostic performance (area under the curve 0.861), with 94.4% sensitivity and 75% specificity. Conclusions. DWI, DCE and IVIM MRI may noninvasively help discriminate IDHI mutation statuses in LGGs. Specifically, simplified DWI-derived SPF showed a superior diagnostic performance.</abstract><cop>BERLIN</cop><pub>Sciendo</pub><pmid>32559177</pmid><doi>10.2478/raon-2020-0037</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1318-2099
ispartof Radiology and oncology, 2020-06, Vol.54 (3), p.301-310
issn 1318-2099
1581-3207
1581-3207
0485-893X
language eng
recordid cdi_proquest_miscellaneous_2415287734
source De Gruyter Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central
subjects 2016 WHO CNS tumor classification
Contrast agents
Diagnostic systems
Diffusion
Diffusion coefficient
diffusion-weighted MRI
dynamic contrast-enhanced MRI
Glioma
glioma perfusion
idh1 mutation
intravoxel incoherent motion
Life Sciences & Biomedicine
Magnetic resonance imaging
Mathematical analysis
Medical imaging
Mutants
Mutation
Oncology
Parameters
Performance evaluation
Perfusion
Radiology, Nuclear Medicine & Medical Imaging
Science & Technology
Vascularization
title Simplified perfusion fraction from diffusion-weighted imaging in preoperative prediction of IDH1 mutation in WHO grade II–III gliomas: comparison with dynamic contrast-enhanced and intravoxel incoherent motion MRI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T15%3A38%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simplified%20perfusion%20fraction%20from%20diffusion-weighted%20imaging%20in%20preoperative%20prediction%20of%20IDH1%20mutation%20in%20WHO%20grade%20II%E2%80%93III%20gliomas:%20comparison%20with%20dynamic%20contrast-enhanced%20and%20intravoxel%20incoherent%20motion%20MRI&rft.jtitle=Radiology%20and%20oncology&rft.au=Wang,%20Xiaoqing&rft.date=2020-06-19&rft.volume=54&rft.issue=3&rft.spage=301&rft.epage=310&rft.pages=301-310&rft.issn=1318-2099&rft.eissn=1581-3207&rft_id=info:doi/10.2478/raon-2020-0037&rft_dat=%3Cproquest_doaj_%3E2429338594%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429338594&rft_id=info:pmid/32559177&rft_doaj_id=oai_doaj_org_article_657800d3e2454555a67e9c897b014d0d&rfr_iscdi=true