Dynamic Reoxidation/Reduction-Driven Atomic Interdiffusion for Highly Selective CO2 Reduction toward Methane

Understanding the dynamic structural reconstruction/transformation of catalysts during electrochemical CO2 reduction reaction (CO2RR) is highly desired for developing more efficient and selective catalysts, yet still lacks in-depth realization. Herein, we study a model system of copper nanowires wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2020-07, Vol.142 (28), p.12119-12132
Hauptverfasser: Chang, Chia-Jui, Lin, Sheng-Chih, Chen, Hsiao-Chien, Wang, Jiali, Zheng, Kai Jen, Zhu, Yanping, Chen, Hao Ming
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12132
container_issue 28
container_start_page 12119
container_title Journal of the American Chemical Society
container_volume 142
creator Chang, Chia-Jui
Lin, Sheng-Chih
Chen, Hsiao-Chien
Wang, Jiali
Zheng, Kai Jen
Zhu, Yanping
Chen, Hao Ming
description Understanding the dynamic structural reconstruction/transformation of catalysts during electrochemical CO2 reduction reaction (CO2RR) is highly desired for developing more efficient and selective catalysts, yet still lacks in-depth realization. Herein, we study a model system of copper nanowires with various degrees of silver modifications as electrocatalysts for CO2RR. Among them, the Cu68Ag32 nanowire catalyst achieves the highest activity and selectivity toward methane with an extremely high faradaic efficiency of ∼60%, about 3 times higher than that of primitive Cu nanowires, and even surpasses the most efficient catalysts for producing methane. By using in situ grazing-angle X-ray scattering/diffraction, X-ray absorption spectroscopy, and Raman techniques, we found that the Cu68Ag32 nanowires underwent an irreversible structural reconstruction and well-stabilized chemical state of Cu on the catalyst surface under the working CO2RR conditions, which greatly facilitates the CO2 to methane conversion. Further analysis reveals that the restructuring phenomenon can be ascribed to a reoxidation/reduction-driven atomic interdiffusion between Cu and Ag. This work reveals the first empirical demonstration by deploying comprehensive in situ techniques to track the dynamic structural reconstruction/transformation in a model bimetallic system, which not only establishes a good understanding of the correlation between catalyst surface structure and catalytic selectivity but also provides deep insights into designing more developed electrocatalysts for CO2RR and beyond.
doi_str_mv 10.1021/jacs.0c01859
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2415284162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2415284162</sourcerecordid><originalsourceid>FETCH-LOGICAL-a287t-4fbc7f4e483569c0277ba44f75eb11af4d334787d80ee1405c48e161dd29486a3</originalsourceid><addsrcrecordid>eNpFkEFPAjEQhRujiYje_AE9ellpu91tORJQIcGQoJ6b0k6lZNnqdhfl39uNRE8zk_fe5OVD6JaSe0oYHe20iffEECqL8Rka0IKRrKCsPEcDQgjLhCzzS3QV4y6dnEk6QNXsWOu9N3gN4dtb3fpQj9ZgO9Nv2azxB6jxpA29Z1G30FjvXBeTiF1o8Ny_b6sjfoEKUuIAeLpi-C-P2_ClG4ufod3qGq7RhdNVhJvTHKK3x4fX6Txbrp4W08ky00yKNuNuY4TjwGVelGNDmBAbzbkTBWwo1Y7bPOdCCisJAOWkMFwCLam1bMxlqfMhuvv9-9GEzw5iq_Y-Gqiq1CF0UTGe0EhOS_ZvTejULnRNnYopSlQPVPVA1Qlo_gMdb2oA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415284162</pqid></control><display><type>article</type><title>Dynamic Reoxidation/Reduction-Driven Atomic Interdiffusion for Highly Selective CO2 Reduction toward Methane</title><source>American Chemical Society Journals</source><creator>Chang, Chia-Jui ; Lin, Sheng-Chih ; Chen, Hsiao-Chien ; Wang, Jiali ; Zheng, Kai Jen ; Zhu, Yanping ; Chen, Hao Ming</creator><creatorcontrib>Chang, Chia-Jui ; Lin, Sheng-Chih ; Chen, Hsiao-Chien ; Wang, Jiali ; Zheng, Kai Jen ; Zhu, Yanping ; Chen, Hao Ming</creatorcontrib><description>Understanding the dynamic structural reconstruction/transformation of catalysts during electrochemical CO2 reduction reaction (CO2RR) is highly desired for developing more efficient and selective catalysts, yet still lacks in-depth realization. Herein, we study a model system of copper nanowires with various degrees of silver modifications as electrocatalysts for CO2RR. Among them, the Cu68Ag32 nanowire catalyst achieves the highest activity and selectivity toward methane with an extremely high faradaic efficiency of ∼60%, about 3 times higher than that of primitive Cu nanowires, and even surpasses the most efficient catalysts for producing methane. By using in situ grazing-angle X-ray scattering/diffraction, X-ray absorption spectroscopy, and Raman techniques, we found that the Cu68Ag32 nanowires underwent an irreversible structural reconstruction and well-stabilized chemical state of Cu on the catalyst surface under the working CO2RR conditions, which greatly facilitates the CO2 to methane conversion. Further analysis reveals that the restructuring phenomenon can be ascribed to a reoxidation/reduction-driven atomic interdiffusion between Cu and Ag. This work reveals the first empirical demonstration by deploying comprehensive in situ techniques to track the dynamic structural reconstruction/transformation in a model bimetallic system, which not only establishes a good understanding of the correlation between catalyst surface structure and catalytic selectivity but also provides deep insights into designing more developed electrocatalysts for CO2RR and beyond.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.0c01859</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2020-07, Vol.142 (28), p.12119-12132</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7480-9940</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.0c01859$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.0c01859$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Chang, Chia-Jui</creatorcontrib><creatorcontrib>Lin, Sheng-Chih</creatorcontrib><creatorcontrib>Chen, Hsiao-Chien</creatorcontrib><creatorcontrib>Wang, Jiali</creatorcontrib><creatorcontrib>Zheng, Kai Jen</creatorcontrib><creatorcontrib>Zhu, Yanping</creatorcontrib><creatorcontrib>Chen, Hao Ming</creatorcontrib><title>Dynamic Reoxidation/Reduction-Driven Atomic Interdiffusion for Highly Selective CO2 Reduction toward Methane</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Understanding the dynamic structural reconstruction/transformation of catalysts during electrochemical CO2 reduction reaction (CO2RR) is highly desired for developing more efficient and selective catalysts, yet still lacks in-depth realization. Herein, we study a model system of copper nanowires with various degrees of silver modifications as electrocatalysts for CO2RR. Among them, the Cu68Ag32 nanowire catalyst achieves the highest activity and selectivity toward methane with an extremely high faradaic efficiency of ∼60%, about 3 times higher than that of primitive Cu nanowires, and even surpasses the most efficient catalysts for producing methane. By using in situ grazing-angle X-ray scattering/diffraction, X-ray absorption spectroscopy, and Raman techniques, we found that the Cu68Ag32 nanowires underwent an irreversible structural reconstruction and well-stabilized chemical state of Cu on the catalyst surface under the working CO2RR conditions, which greatly facilitates the CO2 to methane conversion. Further analysis reveals that the restructuring phenomenon can be ascribed to a reoxidation/reduction-driven atomic interdiffusion between Cu and Ag. This work reveals the first empirical demonstration by deploying comprehensive in situ techniques to track the dynamic structural reconstruction/transformation in a model bimetallic system, which not only establishes a good understanding of the correlation between catalyst surface structure and catalytic selectivity but also provides deep insights into designing more developed electrocatalysts for CO2RR and beyond.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpFkEFPAjEQhRujiYje_AE9ellpu91tORJQIcGQoJ6b0k6lZNnqdhfl39uNRE8zk_fe5OVD6JaSe0oYHe20iffEECqL8Rka0IKRrKCsPEcDQgjLhCzzS3QV4y6dnEk6QNXsWOu9N3gN4dtb3fpQj9ZgO9Nv2azxB6jxpA29Z1G30FjvXBeTiF1o8Ny_b6sjfoEKUuIAeLpi-C-P2_ClG4ufod3qGq7RhdNVhJvTHKK3x4fX6Txbrp4W08ky00yKNuNuY4TjwGVelGNDmBAbzbkTBWwo1Y7bPOdCCisJAOWkMFwCLam1bMxlqfMhuvv9-9GEzw5iq_Y-Gqiq1CF0UTGe0EhOS_ZvTejULnRNnYopSlQPVPVA1Qlo_gMdb2oA</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>Chang, Chia-Jui</creator><creator>Lin, Sheng-Chih</creator><creator>Chen, Hsiao-Chien</creator><creator>Wang, Jiali</creator><creator>Zheng, Kai Jen</creator><creator>Zhu, Yanping</creator><creator>Chen, Hao Ming</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7480-9940</orcidid></search><sort><creationdate>20200715</creationdate><title>Dynamic Reoxidation/Reduction-Driven Atomic Interdiffusion for Highly Selective CO2 Reduction toward Methane</title><author>Chang, Chia-Jui ; Lin, Sheng-Chih ; Chen, Hsiao-Chien ; Wang, Jiali ; Zheng, Kai Jen ; Zhu, Yanping ; Chen, Hao Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a287t-4fbc7f4e483569c0277ba44f75eb11af4d334787d80ee1405c48e161dd29486a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Chia-Jui</creatorcontrib><creatorcontrib>Lin, Sheng-Chih</creatorcontrib><creatorcontrib>Chen, Hsiao-Chien</creatorcontrib><creatorcontrib>Wang, Jiali</creatorcontrib><creatorcontrib>Zheng, Kai Jen</creatorcontrib><creatorcontrib>Zhu, Yanping</creatorcontrib><creatorcontrib>Chen, Hao Ming</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Chia-Jui</au><au>Lin, Sheng-Chih</au><au>Chen, Hsiao-Chien</au><au>Wang, Jiali</au><au>Zheng, Kai Jen</au><au>Zhu, Yanping</au><au>Chen, Hao Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Reoxidation/Reduction-Driven Atomic Interdiffusion for Highly Selective CO2 Reduction toward Methane</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2020-07-15</date><risdate>2020</risdate><volume>142</volume><issue>28</issue><spage>12119</spage><epage>12132</epage><pages>12119-12132</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Understanding the dynamic structural reconstruction/transformation of catalysts during electrochemical CO2 reduction reaction (CO2RR) is highly desired for developing more efficient and selective catalysts, yet still lacks in-depth realization. Herein, we study a model system of copper nanowires with various degrees of silver modifications as electrocatalysts for CO2RR. Among them, the Cu68Ag32 nanowire catalyst achieves the highest activity and selectivity toward methane with an extremely high faradaic efficiency of ∼60%, about 3 times higher than that of primitive Cu nanowires, and even surpasses the most efficient catalysts for producing methane. By using in situ grazing-angle X-ray scattering/diffraction, X-ray absorption spectroscopy, and Raman techniques, we found that the Cu68Ag32 nanowires underwent an irreversible structural reconstruction and well-stabilized chemical state of Cu on the catalyst surface under the working CO2RR conditions, which greatly facilitates the CO2 to methane conversion. Further analysis reveals that the restructuring phenomenon can be ascribed to a reoxidation/reduction-driven atomic interdiffusion between Cu and Ag. This work reveals the first empirical demonstration by deploying comprehensive in situ techniques to track the dynamic structural reconstruction/transformation in a model bimetallic system, which not only establishes a good understanding of the correlation between catalyst surface structure and catalytic selectivity but also provides deep insights into designing more developed electrocatalysts for CO2RR and beyond.</abstract><pub>American Chemical Society</pub><doi>10.1021/jacs.0c01859</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7480-9940</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2020-07, Vol.142 (28), p.12119-12132
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2415284162
source American Chemical Society Journals
title Dynamic Reoxidation/Reduction-Driven Atomic Interdiffusion for Highly Selective CO2 Reduction toward Methane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A07%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Reoxidation/Reduction-Driven%20Atomic%20Interdiffusion%20for%20Highly%20Selective%20CO2%20Reduction%20toward%20Methane&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Chang,%20Chia-Jui&rft.date=2020-07-15&rft.volume=142&rft.issue=28&rft.spage=12119&rft.epage=12132&rft.pages=12119-12132&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.0c01859&rft_dat=%3Cproquest_acs_j%3E2415284162%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2415284162&rft_id=info:pmid/&rfr_iscdi=true