The role of technology in melanoma screening and diagnosis

Melanoma presents challenges for timely and accurate diagnosis. Expert panels have issued risk‐based screening guidelines, with recommended screening by visual inspection. To assess how recent technology can impact the risk/benefit considerations for melanoma screening, we comprehensively reviewed n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pigment cell and melanoma research 2021-03, Vol.34 (2), p.288-300
Hauptverfasser: Young, Albert T., Vora, Niki B., Cortez, Jose, Tam, Andrew, Yeniay, Yildiray, Afifi, Ladi, Yan, Di, Nosrati, Adi, Wong, Andrew, Johal, Arjun, Wei, Maria L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 300
container_issue 2
container_start_page 288
container_title Pigment cell and melanoma research
container_volume 34
creator Young, Albert T.
Vora, Niki B.
Cortez, Jose
Tam, Andrew
Yeniay, Yildiray
Afifi, Ladi
Yan, Di
Nosrati, Adi
Wong, Andrew
Johal, Arjun
Wei, Maria L.
description Melanoma presents challenges for timely and accurate diagnosis. Expert panels have issued risk‐based screening guidelines, with recommended screening by visual inspection. To assess how recent technology can impact the risk/benefit considerations for melanoma screening, we comprehensively reviewed non‐invasive visual‐based technologies. Dermoscopy increases lesional diagnostic accuracy for both dermatologists and primary care providers; total body photography and sequential digital dermoscopic imaging also increase diagnostic accuracy, are supported by automated lesion detection and tracking, and may be best suited to use by dermatologists for longitudinal follow‐up. Specialized imaging modalities using non‐visible light technology have unproven benefit over dermoscopy and can be limited by cost, access, and training requirements. Mobile apps facilitate image capture and lesion tracking. Teledermatology has good concordance with face‐to‐face consultation and increases access, with increased accuracy using dermoscopy. Deep learning models can surpass dermatologist accuracy, but their clinical utility has yet to be demonstrated. Technology‐aided diagnosis may change the calculus of screening; however, well‐designed prospective trials are needed to assess the efficacy of these different technologies, alone and in combination to support refinement of guidelines for melanoma screening.
doi_str_mv 10.1111/pcmr.12907
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2415284150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2497902867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4277-60544f5b2b756a0708b6aab5a00876941d58dba9f99530fac426150ae81c131a3</originalsourceid><addsrcrecordid>eNp90E1PwyAcBnBiNG5OL34AQ-LFmHQCLQW8mcW3ZEZjZuKNUEq3Li1MWGP27WV2evAgB-Dw4-GfB4BTjMY4rquVbv0YE4HYHhhiRmmCM_6-_3tneACOQlgilCMq0kMwSAmlnHA8BNezhYHeNQa6Cq6NXljXuPkG1ha2plHWtQoG7Y2xtZ1DZUtY1mpuXajDMTioVBPMye4cgbe729nkIZk-3z9ObqaJzghjSfwzyypakILRXCGGeJErVVCFEGe5yHBJeVkoUQlBU1Sp-CrHFCnDscYpVukIXPS5K-8-OhPWsq2DNk2czrguSJJhSnjcUKTnf-jSdd7G6aISTCDCcxbVZa-0dyF4U8mVr1vlNxIjuW1UbhuV341GfLaL7IrWlL_0p8IIcA8-68Zs_omSL5On1z70C-lBfnI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2497902867</pqid></control><display><type>article</type><title>The role of technology in melanoma screening and diagnosis</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><creator>Young, Albert T. ; Vora, Niki B. ; Cortez, Jose ; Tam, Andrew ; Yeniay, Yildiray ; Afifi, Ladi ; Yan, Di ; Nosrati, Adi ; Wong, Andrew ; Johal, Arjun ; Wei, Maria L.</creator><creatorcontrib>Young, Albert T. ; Vora, Niki B. ; Cortez, Jose ; Tam, Andrew ; Yeniay, Yildiray ; Afifi, Ladi ; Yan, Di ; Nosrati, Adi ; Wong, Andrew ; Johal, Arjun ; Wei, Maria L.</creatorcontrib><description>Melanoma presents challenges for timely and accurate diagnosis. Expert panels have issued risk‐based screening guidelines, with recommended screening by visual inspection. To assess how recent technology can impact the risk/benefit considerations for melanoma screening, we comprehensively reviewed non‐invasive visual‐based technologies. Dermoscopy increases lesional diagnostic accuracy for both dermatologists and primary care providers; total body photography and sequential digital dermoscopic imaging also increase diagnostic accuracy, are supported by automated lesion detection and tracking, and may be best suited to use by dermatologists for longitudinal follow‐up. Specialized imaging modalities using non‐visible light technology have unproven benefit over dermoscopy and can be limited by cost, access, and training requirements. Mobile apps facilitate image capture and lesion tracking. Teledermatology has good concordance with face‐to‐face consultation and increases access, with increased accuracy using dermoscopy. Deep learning models can surpass dermatologist accuracy, but their clinical utility has yet to be demonstrated. Technology‐aided diagnosis may change the calculus of screening; however, well‐designed prospective trials are needed to assess the efficacy of these different technologies, alone and in combination to support refinement of guidelines for melanoma screening.</description><identifier>ISSN: 1755-1471</identifier><identifier>EISSN: 1755-148X</identifier><identifier>DOI: 10.1111/pcmr.12907</identifier><identifier>PMID: 32558281</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Accuracy ; Applications programs ; Clinical trials ; Deep learning ; Dermatology ; Dermoscopy - methods ; Diagnosis ; Diagnosis, Computer-Assisted - methods ; diagnostic imaging ; Diagnostic systems ; Digital imaging ; Early Detection of Cancer - methods ; Guidelines ; Humans ; Image Processing, Computer-Assisted - methods ; Inspection ; Lesions ; Medical imaging ; Melanoma ; Melanoma - diagnosis ; Melanoma - diagnostic imaging ; Mobile computing ; Model accuracy ; Photography ; Photography - methods ; Screening ; Skin Neoplasms - diagnosis ; Skin Neoplasms - diagnostic imaging ; technology ; Technology assessment ; Tracking</subject><ispartof>Pigment cell and melanoma research, 2021-03, Vol.34 (2), p.288-300</ispartof><rights>2020 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd</rights><rights>2020 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2021 John Wiley &amp; Sons A/S</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4277-60544f5b2b756a0708b6aab5a00876941d58dba9f99530fac426150ae81c131a3</citedby><cites>FETCH-LOGICAL-c4277-60544f5b2b756a0708b6aab5a00876941d58dba9f99530fac426150ae81c131a3</cites><orcidid>0000-0002-4088-2488 ; 0000-0002-3568-1921 ; 0000-0002-7860-0722</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpcmr.12907$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpcmr.12907$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32558281$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Young, Albert T.</creatorcontrib><creatorcontrib>Vora, Niki B.</creatorcontrib><creatorcontrib>Cortez, Jose</creatorcontrib><creatorcontrib>Tam, Andrew</creatorcontrib><creatorcontrib>Yeniay, Yildiray</creatorcontrib><creatorcontrib>Afifi, Ladi</creatorcontrib><creatorcontrib>Yan, Di</creatorcontrib><creatorcontrib>Nosrati, Adi</creatorcontrib><creatorcontrib>Wong, Andrew</creatorcontrib><creatorcontrib>Johal, Arjun</creatorcontrib><creatorcontrib>Wei, Maria L.</creatorcontrib><title>The role of technology in melanoma screening and diagnosis</title><title>Pigment cell and melanoma research</title><addtitle>Pigment Cell Melanoma Res</addtitle><description>Melanoma presents challenges for timely and accurate diagnosis. Expert panels have issued risk‐based screening guidelines, with recommended screening by visual inspection. To assess how recent technology can impact the risk/benefit considerations for melanoma screening, we comprehensively reviewed non‐invasive visual‐based technologies. Dermoscopy increases lesional diagnostic accuracy for both dermatologists and primary care providers; total body photography and sequential digital dermoscopic imaging also increase diagnostic accuracy, are supported by automated lesion detection and tracking, and may be best suited to use by dermatologists for longitudinal follow‐up. Specialized imaging modalities using non‐visible light technology have unproven benefit over dermoscopy and can be limited by cost, access, and training requirements. Mobile apps facilitate image capture and lesion tracking. Teledermatology has good concordance with face‐to‐face consultation and increases access, with increased accuracy using dermoscopy. Deep learning models can surpass dermatologist accuracy, but their clinical utility has yet to be demonstrated. Technology‐aided diagnosis may change the calculus of screening; however, well‐designed prospective trials are needed to assess the efficacy of these different technologies, alone and in combination to support refinement of guidelines for melanoma screening.</description><subject>Accuracy</subject><subject>Applications programs</subject><subject>Clinical trials</subject><subject>Deep learning</subject><subject>Dermatology</subject><subject>Dermoscopy - methods</subject><subject>Diagnosis</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>diagnostic imaging</subject><subject>Diagnostic systems</subject><subject>Digital imaging</subject><subject>Early Detection of Cancer - methods</subject><subject>Guidelines</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Inspection</subject><subject>Lesions</subject><subject>Medical imaging</subject><subject>Melanoma</subject><subject>Melanoma - diagnosis</subject><subject>Melanoma - diagnostic imaging</subject><subject>Mobile computing</subject><subject>Model accuracy</subject><subject>Photography</subject><subject>Photography - methods</subject><subject>Screening</subject><subject>Skin Neoplasms - diagnosis</subject><subject>Skin Neoplasms - diagnostic imaging</subject><subject>technology</subject><subject>Technology assessment</subject><subject>Tracking</subject><issn>1755-1471</issn><issn>1755-148X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90E1PwyAcBnBiNG5OL34AQ-LFmHQCLQW8mcW3ZEZjZuKNUEq3Li1MWGP27WV2evAgB-Dw4-GfB4BTjMY4rquVbv0YE4HYHhhiRmmCM_6-_3tneACOQlgilCMq0kMwSAmlnHA8BNezhYHeNQa6Cq6NXljXuPkG1ha2plHWtQoG7Y2xtZ1DZUtY1mpuXajDMTioVBPMye4cgbe729nkIZk-3z9ObqaJzghjSfwzyypakILRXCGGeJErVVCFEGe5yHBJeVkoUQlBU1Sp-CrHFCnDscYpVukIXPS5K-8-OhPWsq2DNk2czrguSJJhSnjcUKTnf-jSdd7G6aISTCDCcxbVZa-0dyF4U8mVr1vlNxIjuW1UbhuV341GfLaL7IrWlL_0p8IIcA8-68Zs_omSL5On1z70C-lBfnI</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Young, Albert T.</creator><creator>Vora, Niki B.</creator><creator>Cortez, Jose</creator><creator>Tam, Andrew</creator><creator>Yeniay, Yildiray</creator><creator>Afifi, Ladi</creator><creator>Yan, Di</creator><creator>Nosrati, Adi</creator><creator>Wong, Andrew</creator><creator>Johal, Arjun</creator><creator>Wei, Maria L.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TO</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4088-2488</orcidid><orcidid>https://orcid.org/0000-0002-3568-1921</orcidid><orcidid>https://orcid.org/0000-0002-7860-0722</orcidid></search><sort><creationdate>202103</creationdate><title>The role of technology in melanoma screening and diagnosis</title><author>Young, Albert T. ; Vora, Niki B. ; Cortez, Jose ; Tam, Andrew ; Yeniay, Yildiray ; Afifi, Ladi ; Yan, Di ; Nosrati, Adi ; Wong, Andrew ; Johal, Arjun ; Wei, Maria L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4277-60544f5b2b756a0708b6aab5a00876941d58dba9f99530fac426150ae81c131a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Applications programs</topic><topic>Clinical trials</topic><topic>Deep learning</topic><topic>Dermatology</topic><topic>Dermoscopy - methods</topic><topic>Diagnosis</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>diagnostic imaging</topic><topic>Diagnostic systems</topic><topic>Digital imaging</topic><topic>Early Detection of Cancer - methods</topic><topic>Guidelines</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Inspection</topic><topic>Lesions</topic><topic>Medical imaging</topic><topic>Melanoma</topic><topic>Melanoma - diagnosis</topic><topic>Melanoma - diagnostic imaging</topic><topic>Mobile computing</topic><topic>Model accuracy</topic><topic>Photography</topic><topic>Photography - methods</topic><topic>Screening</topic><topic>Skin Neoplasms - diagnosis</topic><topic>Skin Neoplasms - diagnostic imaging</topic><topic>technology</topic><topic>Technology assessment</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Young, Albert T.</creatorcontrib><creatorcontrib>Vora, Niki B.</creatorcontrib><creatorcontrib>Cortez, Jose</creatorcontrib><creatorcontrib>Tam, Andrew</creatorcontrib><creatorcontrib>Yeniay, Yildiray</creatorcontrib><creatorcontrib>Afifi, Ladi</creatorcontrib><creatorcontrib>Yan, Di</creatorcontrib><creatorcontrib>Nosrati, Adi</creatorcontrib><creatorcontrib>Wong, Andrew</creatorcontrib><creatorcontrib>Johal, Arjun</creatorcontrib><creatorcontrib>Wei, Maria L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Pigment cell and melanoma research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Young, Albert T.</au><au>Vora, Niki B.</au><au>Cortez, Jose</au><au>Tam, Andrew</au><au>Yeniay, Yildiray</au><au>Afifi, Ladi</au><au>Yan, Di</au><au>Nosrati, Adi</au><au>Wong, Andrew</au><au>Johal, Arjun</au><au>Wei, Maria L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of technology in melanoma screening and diagnosis</atitle><jtitle>Pigment cell and melanoma research</jtitle><addtitle>Pigment Cell Melanoma Res</addtitle><date>2021-03</date><risdate>2021</risdate><volume>34</volume><issue>2</issue><spage>288</spage><epage>300</epage><pages>288-300</pages><issn>1755-1471</issn><eissn>1755-148X</eissn><abstract>Melanoma presents challenges for timely and accurate diagnosis. Expert panels have issued risk‐based screening guidelines, with recommended screening by visual inspection. To assess how recent technology can impact the risk/benefit considerations for melanoma screening, we comprehensively reviewed non‐invasive visual‐based technologies. Dermoscopy increases lesional diagnostic accuracy for both dermatologists and primary care providers; total body photography and sequential digital dermoscopic imaging also increase diagnostic accuracy, are supported by automated lesion detection and tracking, and may be best suited to use by dermatologists for longitudinal follow‐up. Specialized imaging modalities using non‐visible light technology have unproven benefit over dermoscopy and can be limited by cost, access, and training requirements. Mobile apps facilitate image capture and lesion tracking. Teledermatology has good concordance with face‐to‐face consultation and increases access, with increased accuracy using dermoscopy. Deep learning models can surpass dermatologist accuracy, but their clinical utility has yet to be demonstrated. Technology‐aided diagnosis may change the calculus of screening; however, well‐designed prospective trials are needed to assess the efficacy of these different technologies, alone and in combination to support refinement of guidelines for melanoma screening.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32558281</pmid><doi>10.1111/pcmr.12907</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4088-2488</orcidid><orcidid>https://orcid.org/0000-0002-3568-1921</orcidid><orcidid>https://orcid.org/0000-0002-7860-0722</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1755-1471
ispartof Pigment cell and melanoma research, 2021-03, Vol.34 (2), p.288-300
issn 1755-1471
1755-148X
language eng
recordid cdi_proquest_miscellaneous_2415284150
source Wiley-Blackwell Journals; MEDLINE
subjects Accuracy
Applications programs
Clinical trials
Deep learning
Dermatology
Dermoscopy - methods
Diagnosis
Diagnosis, Computer-Assisted - methods
diagnostic imaging
Diagnostic systems
Digital imaging
Early Detection of Cancer - methods
Guidelines
Humans
Image Processing, Computer-Assisted - methods
Inspection
Lesions
Medical imaging
Melanoma
Melanoma - diagnosis
Melanoma - diagnostic imaging
Mobile computing
Model accuracy
Photography
Photography - methods
Screening
Skin Neoplasms - diagnosis
Skin Neoplasms - diagnostic imaging
technology
Technology assessment
Tracking
title The role of technology in melanoma screening and diagnosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T11%3A20%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20technology%20in%20melanoma%20screening%20and%20diagnosis&rft.jtitle=Pigment%20cell%20and%20melanoma%20research&rft.au=Young,%20Albert%20T.&rft.date=2021-03&rft.volume=34&rft.issue=2&rft.spage=288&rft.epage=300&rft.pages=288-300&rft.issn=1755-1471&rft.eissn=1755-148X&rft_id=info:doi/10.1111/pcmr.12907&rft_dat=%3Cproquest_cross%3E2497902867%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2497902867&rft_id=info:pmid/32558281&rfr_iscdi=true