The specificity of H2A.Z occupancy in the yeast genome and its relationship to transcription
The incorporation of histone variants into nucleosomes has important functional consequences in all aspects of eukaryotic chromatin biology. H2A.Z is a conserved histone variant found in all eukaryotes from yeast to mammals. Recent studies in yeast have shed light on the questions of where and how n...
Gespeichert in:
Veröffentlicht in: | Current genetics 2020-10, Vol.66 (5), p.939-944 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 944 |
---|---|
container_issue | 5 |
container_start_page | 939 |
container_title | Current genetics |
container_volume | 66 |
creator | Iyer, Vishwanath R. |
description | The incorporation of histone variants into nucleosomes has important functional consequences in all aspects of eukaryotic chromatin biology. H2A.Z is a conserved histone variant found in all eukaryotes from yeast to mammals. Recent studies in yeast have shed light on the questions of where and how nucleosomes containing this variant are situated at promoters and in relation to genes, and what its specificity implies with regard to transcription. In yeast, H2A.Z appears to be primarily incorporated into the first nucleosome in the direction of transcription initiation, either of an mRNA transcript or a divergently transcribed upstream antisense non-coding RNA. This specificity of H2A.Z is due in part to the localization at promoters of SWR1, the ATP-dependent chromatin remodeler that incorporates H2A.Z into nucleosomes. Replacement of H2A.Z with canonical H2A is dependent on the function of the transcription pre-initiation complex. The recent studies summarized in this review reveal that the directionality of H2A.Z occupancy in relation to transcription thus reflects a balance of incorporation and eviction activities, which likely have varying contributions at distinct sets of genes across the genome. |
doi_str_mv | 10.1007/s00294-020-01087-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2414009403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2441910728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-e12a462a59b849d60b129e9fd99f84809d8c735518cce27a0e1e709397373d8a3</originalsourceid><addsrcrecordid>eNp9kM9LXDEQx0Ox1NX2H-hBAl68PJ38eJvkKNKqIHixl1II2bx5GtlNnkneYf97Y1db8OBpYOYz3xk-hHxncMoA1FkB4EZ2wKEDBlp16hNZMCl4B0aLPbIApninQYt9clDKIwDj2qgvZF_wXqjlUi3In7sHpGVCH8bgQ93SNNIrfn76mybv58lFv6Uh0tqoLbpS6T3GtEHq4kBDLTTj2tWQYnkIE62J1uxi8TlML82v5PPo1gW_vdZD8uvnj7uLq-7m9vL64vym80L1tUPGnVxy15uVlmZYwopxg2YcjBm11GAG7ZXoe6a9R64cIEMFRhgllBi0E4fkZJc75fQ0Y6l2E4rH9dpFTHOxXDIJYCSIhh6_Qx_TnGP7rlGSGQaK60bxHeVzKiXjaKccNi5vLQP74t7u3Nvm3v51b1VbOnqNnlcbHP6tvMlugNgBpY3iPeb_tz-IfQZxB42J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441910728</pqid></control><display><type>article</type><title>The specificity of H2A.Z occupancy in the yeast genome and its relationship to transcription</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Iyer, Vishwanath R.</creator><creatorcontrib>Iyer, Vishwanath R.</creatorcontrib><description>The incorporation of histone variants into nucleosomes has important functional consequences in all aspects of eukaryotic chromatin biology. H2A.Z is a conserved histone variant found in all eukaryotes from yeast to mammals. Recent studies in yeast have shed light on the questions of where and how nucleosomes containing this variant are situated at promoters and in relation to genes, and what its specificity implies with regard to transcription. In yeast, H2A.Z appears to be primarily incorporated into the first nucleosome in the direction of transcription initiation, either of an mRNA transcript or a divergently transcribed upstream antisense non-coding RNA. This specificity of H2A.Z is due in part to the localization at promoters of SWR1, the ATP-dependent chromatin remodeler that incorporates H2A.Z into nucleosomes. Replacement of H2A.Z with canonical H2A is dependent on the function of the transcription pre-initiation complex. The recent studies summarized in this review reveal that the directionality of H2A.Z occupancy in relation to transcription thus reflects a balance of incorporation and eviction activities, which likely have varying contributions at distinct sets of genes across the genome.</description><identifier>ISSN: 0172-8083</identifier><identifier>EISSN: 1432-0983</identifier><identifier>DOI: 10.1007/s00294-020-01087-7</identifier><identifier>PMID: 32537667</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adenosine Triphosphatases - genetics ; Adenosine Triphosphatases - metabolism ; Antisense RNA ; Biochemistry ; Biomedical and Life Sciences ; Cell Biology ; Chromatin ; Eukaryotes ; Genes ; Genetic Variation ; Genome, Fungal ; Genomes ; Histones ; Histones - chemistry ; Histones - genetics ; Histones - metabolism ; Initiation complex ; Life Sciences ; Localization ; Microbial Genetics and Genomics ; Microbiology ; Mini-Review ; Non-coding RNA ; Nucleosomes ; Nucleosomes - genetics ; Nucleosomes - metabolism ; Occupancy ; Plant Sciences ; Promoter Regions, Genetic ; Promoters ; Proteomics ; Ribosomal Proteins - genetics ; Ribosomal Proteins - metabolism ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Transcription initiation ; Transcription, Genetic ; Yeast ; Yeasts</subject><ispartof>Current genetics, 2020-10, Vol.66 (5), p.939-944</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-e12a462a59b849d60b129e9fd99f84809d8c735518cce27a0e1e709397373d8a3</citedby><cites>FETCH-LOGICAL-c375t-e12a462a59b849d60b129e9fd99f84809d8c735518cce27a0e1e709397373d8a3</cites><orcidid>0000-0003-3383-248X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00294-020-01087-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00294-020-01087-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32537667$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iyer, Vishwanath R.</creatorcontrib><title>The specificity of H2A.Z occupancy in the yeast genome and its relationship to transcription</title><title>Current genetics</title><addtitle>Curr Genet</addtitle><addtitle>Curr Genet</addtitle><description>The incorporation of histone variants into nucleosomes has important functional consequences in all aspects of eukaryotic chromatin biology. H2A.Z is a conserved histone variant found in all eukaryotes from yeast to mammals. Recent studies in yeast have shed light on the questions of where and how nucleosomes containing this variant are situated at promoters and in relation to genes, and what its specificity implies with regard to transcription. In yeast, H2A.Z appears to be primarily incorporated into the first nucleosome in the direction of transcription initiation, either of an mRNA transcript or a divergently transcribed upstream antisense non-coding RNA. This specificity of H2A.Z is due in part to the localization at promoters of SWR1, the ATP-dependent chromatin remodeler that incorporates H2A.Z into nucleosomes. Replacement of H2A.Z with canonical H2A is dependent on the function of the transcription pre-initiation complex. The recent studies summarized in this review reveal that the directionality of H2A.Z occupancy in relation to transcription thus reflects a balance of incorporation and eviction activities, which likely have varying contributions at distinct sets of genes across the genome.</description><subject>Adenosine Triphosphatases - genetics</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Antisense RNA</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Chromatin</subject><subject>Eukaryotes</subject><subject>Genes</subject><subject>Genetic Variation</subject><subject>Genome, Fungal</subject><subject>Genomes</subject><subject>Histones</subject><subject>Histones - chemistry</subject><subject>Histones - genetics</subject><subject>Histones - metabolism</subject><subject>Initiation complex</subject><subject>Life Sciences</subject><subject>Localization</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Mini-Review</subject><subject>Non-coding RNA</subject><subject>Nucleosomes</subject><subject>Nucleosomes - genetics</subject><subject>Nucleosomes - metabolism</subject><subject>Occupancy</subject><subject>Plant Sciences</subject><subject>Promoter Regions, Genetic</subject><subject>Promoters</subject><subject>Proteomics</subject><subject>Ribosomal Proteins - genetics</subject><subject>Ribosomal Proteins - metabolism</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Transcription initiation</subject><subject>Transcription, Genetic</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0172-8083</issn><issn>1432-0983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM9LXDEQx0Ox1NX2H-hBAl68PJ38eJvkKNKqIHixl1II2bx5GtlNnkneYf97Y1db8OBpYOYz3xk-hHxncMoA1FkB4EZ2wKEDBlp16hNZMCl4B0aLPbIApninQYt9clDKIwDj2qgvZF_wXqjlUi3In7sHpGVCH8bgQ93SNNIrfn76mybv58lFv6Uh0tqoLbpS6T3GtEHq4kBDLTTj2tWQYnkIE62J1uxi8TlML82v5PPo1gW_vdZD8uvnj7uLq-7m9vL64vym80L1tUPGnVxy15uVlmZYwopxg2YcjBm11GAG7ZXoe6a9R64cIEMFRhgllBi0E4fkZJc75fQ0Y6l2E4rH9dpFTHOxXDIJYCSIhh6_Qx_TnGP7rlGSGQaK60bxHeVzKiXjaKccNi5vLQP74t7u3Nvm3v51b1VbOnqNnlcbHP6tvMlugNgBpY3iPeb_tz-IfQZxB42J</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Iyer, Vishwanath R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3383-248X</orcidid></search><sort><creationdate>20201001</creationdate><title>The specificity of H2A.Z occupancy in the yeast genome and its relationship to transcription</title><author>Iyer, Vishwanath R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-e12a462a59b849d60b129e9fd99f84809d8c735518cce27a0e1e709397373d8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adenosine Triphosphatases - genetics</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Antisense RNA</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Chromatin</topic><topic>Eukaryotes</topic><topic>Genes</topic><topic>Genetic Variation</topic><topic>Genome, Fungal</topic><topic>Genomes</topic><topic>Histones</topic><topic>Histones - chemistry</topic><topic>Histones - genetics</topic><topic>Histones - metabolism</topic><topic>Initiation complex</topic><topic>Life Sciences</topic><topic>Localization</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Mini-Review</topic><topic>Non-coding RNA</topic><topic>Nucleosomes</topic><topic>Nucleosomes - genetics</topic><topic>Nucleosomes - metabolism</topic><topic>Occupancy</topic><topic>Plant Sciences</topic><topic>Promoter Regions, Genetic</topic><topic>Promoters</topic><topic>Proteomics</topic><topic>Ribosomal Proteins - genetics</topic><topic>Ribosomal Proteins - metabolism</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Transcription initiation</topic><topic>Transcription, Genetic</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iyer, Vishwanath R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Current genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iyer, Vishwanath R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The specificity of H2A.Z occupancy in the yeast genome and its relationship to transcription</atitle><jtitle>Current genetics</jtitle><stitle>Curr Genet</stitle><addtitle>Curr Genet</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>66</volume><issue>5</issue><spage>939</spage><epage>944</epage><pages>939-944</pages><issn>0172-8083</issn><eissn>1432-0983</eissn><abstract>The incorporation of histone variants into nucleosomes has important functional consequences in all aspects of eukaryotic chromatin biology. H2A.Z is a conserved histone variant found in all eukaryotes from yeast to mammals. Recent studies in yeast have shed light on the questions of where and how nucleosomes containing this variant are situated at promoters and in relation to genes, and what its specificity implies with regard to transcription. In yeast, H2A.Z appears to be primarily incorporated into the first nucleosome in the direction of transcription initiation, either of an mRNA transcript or a divergently transcribed upstream antisense non-coding RNA. This specificity of H2A.Z is due in part to the localization at promoters of SWR1, the ATP-dependent chromatin remodeler that incorporates H2A.Z into nucleosomes. Replacement of H2A.Z with canonical H2A is dependent on the function of the transcription pre-initiation complex. The recent studies summarized in this review reveal that the directionality of H2A.Z occupancy in relation to transcription thus reflects a balance of incorporation and eviction activities, which likely have varying contributions at distinct sets of genes across the genome.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32537667</pmid><doi>10.1007/s00294-020-01087-7</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3383-248X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0172-8083 |
ispartof | Current genetics, 2020-10, Vol.66 (5), p.939-944 |
issn | 0172-8083 1432-0983 |
language | eng |
recordid | cdi_proquest_miscellaneous_2414009403 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Adenosine Triphosphatases - genetics Adenosine Triphosphatases - metabolism Antisense RNA Biochemistry Biomedical and Life Sciences Cell Biology Chromatin Eukaryotes Genes Genetic Variation Genome, Fungal Genomes Histones Histones - chemistry Histones - genetics Histones - metabolism Initiation complex Life Sciences Localization Microbial Genetics and Genomics Microbiology Mini-Review Non-coding RNA Nucleosomes Nucleosomes - genetics Nucleosomes - metabolism Occupancy Plant Sciences Promoter Regions, Genetic Promoters Proteomics Ribosomal Proteins - genetics Ribosomal Proteins - metabolism Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Transcription initiation Transcription, Genetic Yeast Yeasts |
title | The specificity of H2A.Z occupancy in the yeast genome and its relationship to transcription |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A31%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20specificity%20of%20H2A.Z%20occupancy%20in%20the%20yeast%20genome%20and%20its%20relationship%20to%20transcription&rft.jtitle=Current%20genetics&rft.au=Iyer,%20Vishwanath%20R.&rft.date=2020-10-01&rft.volume=66&rft.issue=5&rft.spage=939&rft.epage=944&rft.pages=939-944&rft.issn=0172-8083&rft.eissn=1432-0983&rft_id=info:doi/10.1007/s00294-020-01087-7&rft_dat=%3Cproquest_cross%3E2441910728%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441910728&rft_id=info:pmid/32537667&rfr_iscdi=true |