New outcome-specific comorbidity scores excelled in predicting in-hospital mortality and healthcare charges in administrative databases
To determine the most reliable comorbidity measure, we adapted and validated outcome-specific comorbidity scores to predict mortality and hospital charges using the comorbidities composing the Charlson and Elixhauser measures and the combination of these two used in developing Gagne's combined...
Gespeichert in:
Veröffentlicht in: | Journal of clinical epidemiology 2020-10, Vol.126, p.141-153 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 153 |
---|---|
container_issue | |
container_start_page | 141 |
container_title | Journal of clinical epidemiology |
container_volume | 126 |
creator | Shin, Jung-ho Kunisawa, Susumu Imanaka, Yuichi |
description | To determine the most reliable comorbidity measure, we adapted and validated outcome-specific comorbidity scores to predict mortality and hospital charges using the comorbidities composing the Charlson and Elixhauser measures and the combination of these two used in developing Gagne's combined comorbidity scores (CC, EC, and GC, respectively).
We divided cases of patients discharged in 2016–17 from the Diagnosis Procedure Combination database (n = 2,671,749) into two: one to derive weights for the scores, and the other for validation. We further validated them in subgroups, such as that with a selected diagnosis.
The c-statistics of the models predicting in-hospital mortality using new mortality scores using the CC, EC, and GC were 0.780, 0.795, and 0.794, respectively. Among them, that using the EC showed the best calibration. To predict hospital charges and the length of hospital stay (LOS), the models using variables indicating the GC performed the best. The performances of the mortality and expenditure scores were considerably different in predicting each outcome.
The new score using the EC performed the best in predicting in-hospital mortality for most situations. For hospital charges and the LOS, the binary variables of the GC showed the best results. The outcome-specific comorbidity scores should be considered for different outcomes. |
doi_str_mv | 10.1016/j.jclinepi.2020.06.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2414006745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0895435619307632</els_id><sourcerecordid>2414006745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-75faddb2544f88d1b574ad0adfd375ecacad28c342360f89a7693aae43f21b3f3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EokvhFSpLXLgk2HEce2-gClqkCi5wtib2pOsoiYPttPQJeG282pYDF06jkb__98z8hFxwVnPGu_djPdrJL7j6umENq1lXM86fkR3XSldy3_DnZMf0XlatkN0ZeZXSyBhXTMmX5Ew0smVCqx35_RXvadiyDTNWaUXrB29p6ULsvfP5gSYbIiaKvyxOEzrqF7pGdN5mv9yWrjqEtPoMEy2aUo4aWBw9IEz5YCEitQeIt8WjSMHNfvEpR8j-DqmDDD0kTK_JiwGmhG8e6zn58fnT98vr6ubb1ZfLjzeVlZzlSskBnOvL-O2gteO9VC04Bm5wQkm0YME12oq2ER0b9B5UtxcA2Iqh4b0YxDl5d_JdY_i5Ycpm9um4GSwYtmSalreMdaqVBX37DzqGLS5lukKVdymU0oXqTpSNIaWIg1mjnyE-GM7MMSozmqeozDEqwzpToirCi0f7rZ_R_ZU9ZVOADycAyz3uPEaTrMfFlttHtNm44P_3xx_bkKwR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2445353778</pqid></control><display><type>article</type><title>New outcome-specific comorbidity scores excelled in predicting in-hospital mortality and healthcare charges in administrative databases</title><source>MEDLINE</source><source>ScienceDirect</source><source>ProQuest Central UK/Ireland</source><creator>Shin, Jung-ho ; Kunisawa, Susumu ; Imanaka, Yuichi</creator><creatorcontrib>Shin, Jung-ho ; Kunisawa, Susumu ; Imanaka, Yuichi</creatorcontrib><description>To determine the most reliable comorbidity measure, we adapted and validated outcome-specific comorbidity scores to predict mortality and hospital charges using the comorbidities composing the Charlson and Elixhauser measures and the combination of these two used in developing Gagne's combined comorbidity scores (CC, EC, and GC, respectively).
We divided cases of patients discharged in 2016–17 from the Diagnosis Procedure Combination database (n = 2,671,749) into two: one to derive weights for the scores, and the other for validation. We further validated them in subgroups, such as that with a selected diagnosis.
The c-statistics of the models predicting in-hospital mortality using new mortality scores using the CC, EC, and GC were 0.780, 0.795, and 0.794, respectively. Among them, that using the EC showed the best calibration. To predict hospital charges and the length of hospital stay (LOS), the models using variables indicating the GC performed the best. The performances of the mortality and expenditure scores were considerably different in predicting each outcome.
The new score using the EC performed the best in predicting in-hospital mortality for most situations. For hospital charges and the LOS, the binary variables of the GC showed the best results. The outcome-specific comorbidity scores should be considered for different outcomes.</description><identifier>ISSN: 0895-4356</identifier><identifier>EISSN: 1878-5921</identifier><identifier>DOI: 10.1016/j.jclinepi.2020.06.011</identifier><identifier>PMID: 32540387</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adaptation ; Aged ; Aged, 80 and over ; Charlson ; Classification ; Comorbidity ; Data Management - methods ; Databases, Factual - statistics & numerical data ; Delivery of Health Care - economics ; Diagnosis ; Elixhauser ; Epidemiology ; Expenditures ; Fees and Charges - statistics & numerical data ; Female ; Generalized linear models ; Hospital charges ; Hospital Mortality - trends ; Hospitals ; Humans ; In-hospital mortality ; Length of hospital stay ; Length of Stay - statistics & numerical data ; Male ; Middle Aged ; Mortality ; Outcome Assessment, Health Care ; Patient Discharge ; Population ; Predictive Value of Tests ; Prospective payment systems ; Statistical analysis ; Subgroups ; Variables</subject><ispartof>Journal of clinical epidemiology, 2020-10, Vol.126, p.141-153</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><rights>2020. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-75faddb2544f88d1b574ad0adfd375ecacad28c342360f89a7693aae43f21b3f3</citedby><cites>FETCH-LOGICAL-c510t-75faddb2544f88d1b574ad0adfd375ecacad28c342360f89a7693aae43f21b3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2445353778?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32540387$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shin, Jung-ho</creatorcontrib><creatorcontrib>Kunisawa, Susumu</creatorcontrib><creatorcontrib>Imanaka, Yuichi</creatorcontrib><title>New outcome-specific comorbidity scores excelled in predicting in-hospital mortality and healthcare charges in administrative databases</title><title>Journal of clinical epidemiology</title><addtitle>J Clin Epidemiol</addtitle><description>To determine the most reliable comorbidity measure, we adapted and validated outcome-specific comorbidity scores to predict mortality and hospital charges using the comorbidities composing the Charlson and Elixhauser measures and the combination of these two used in developing Gagne's combined comorbidity scores (CC, EC, and GC, respectively).
We divided cases of patients discharged in 2016–17 from the Diagnosis Procedure Combination database (n = 2,671,749) into two: one to derive weights for the scores, and the other for validation. We further validated them in subgroups, such as that with a selected diagnosis.
The c-statistics of the models predicting in-hospital mortality using new mortality scores using the CC, EC, and GC were 0.780, 0.795, and 0.794, respectively. Among them, that using the EC showed the best calibration. To predict hospital charges and the length of hospital stay (LOS), the models using variables indicating the GC performed the best. The performances of the mortality and expenditure scores were considerably different in predicting each outcome.
The new score using the EC performed the best in predicting in-hospital mortality for most situations. For hospital charges and the LOS, the binary variables of the GC showed the best results. The outcome-specific comorbidity scores should be considered for different outcomes.</description><subject>Adaptation</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Charlson</subject><subject>Classification</subject><subject>Comorbidity</subject><subject>Data Management - methods</subject><subject>Databases, Factual - statistics & numerical data</subject><subject>Delivery of Health Care - economics</subject><subject>Diagnosis</subject><subject>Elixhauser</subject><subject>Epidemiology</subject><subject>Expenditures</subject><subject>Fees and Charges - statistics & numerical data</subject><subject>Female</subject><subject>Generalized linear models</subject><subject>Hospital charges</subject><subject>Hospital Mortality - trends</subject><subject>Hospitals</subject><subject>Humans</subject><subject>In-hospital mortality</subject><subject>Length of hospital stay</subject><subject>Length of Stay - statistics & numerical data</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Mortality</subject><subject>Outcome Assessment, Health Care</subject><subject>Patient Discharge</subject><subject>Population</subject><subject>Predictive Value of Tests</subject><subject>Prospective payment systems</subject><subject>Statistical analysis</subject><subject>Subgroups</subject><subject>Variables</subject><issn>0895-4356</issn><issn>1878-5921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkcFu1DAQhi0EokvhFSpLXLgk2HEce2-gClqkCi5wtib2pOsoiYPttPQJeG282pYDF06jkb__98z8hFxwVnPGu_djPdrJL7j6umENq1lXM86fkR3XSldy3_DnZMf0XlatkN0ZeZXSyBhXTMmX5Ew0smVCqx35_RXvadiyDTNWaUXrB29p6ULsvfP5gSYbIiaKvyxOEzrqF7pGdN5mv9yWrjqEtPoMEy2aUo4aWBw9IEz5YCEitQeIt8WjSMHNfvEpR8j-DqmDDD0kTK_JiwGmhG8e6zn58fnT98vr6ubb1ZfLjzeVlZzlSskBnOvL-O2gteO9VC04Bm5wQkm0YME12oq2ER0b9B5UtxcA2Iqh4b0YxDl5d_JdY_i5Ycpm9um4GSwYtmSalreMdaqVBX37DzqGLS5lukKVdymU0oXqTpSNIaWIg1mjnyE-GM7MMSozmqeozDEqwzpToirCi0f7rZ_R_ZU9ZVOADycAyz3uPEaTrMfFlttHtNm44P_3xx_bkKwR</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Shin, Jung-ho</creator><creator>Kunisawa, Susumu</creator><creator>Imanaka, Yuichi</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7RV</scope><scope>7T2</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>202010</creationdate><title>New outcome-specific comorbidity scores excelled in predicting in-hospital mortality and healthcare charges in administrative databases</title><author>Shin, Jung-ho ; Kunisawa, Susumu ; Imanaka, Yuichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-75faddb2544f88d1b574ad0adfd375ecacad28c342360f89a7693aae43f21b3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Charlson</topic><topic>Classification</topic><topic>Comorbidity</topic><topic>Data Management - methods</topic><topic>Databases, Factual - statistics & numerical data</topic><topic>Delivery of Health Care - economics</topic><topic>Diagnosis</topic><topic>Elixhauser</topic><topic>Epidemiology</topic><topic>Expenditures</topic><topic>Fees and Charges - statistics & numerical data</topic><topic>Female</topic><topic>Generalized linear models</topic><topic>Hospital charges</topic><topic>Hospital Mortality - trends</topic><topic>Hospitals</topic><topic>Humans</topic><topic>In-hospital mortality</topic><topic>Length of hospital stay</topic><topic>Length of Stay - statistics & numerical data</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Mortality</topic><topic>Outcome Assessment, Health Care</topic><topic>Patient Discharge</topic><topic>Population</topic><topic>Predictive Value of Tests</topic><topic>Prospective payment systems</topic><topic>Statistical analysis</topic><topic>Subgroups</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Jung-ho</creatorcontrib><creatorcontrib>Kunisawa, Susumu</creatorcontrib><creatorcontrib>Imanaka, Yuichi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>ProQuest Nursing and Allied Health Source</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Health Management Database (Proquest)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of clinical epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Jung-ho</au><au>Kunisawa, Susumu</au><au>Imanaka, Yuichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New outcome-specific comorbidity scores excelled in predicting in-hospital mortality and healthcare charges in administrative databases</atitle><jtitle>Journal of clinical epidemiology</jtitle><addtitle>J Clin Epidemiol</addtitle><date>2020-10</date><risdate>2020</risdate><volume>126</volume><spage>141</spage><epage>153</epage><pages>141-153</pages><issn>0895-4356</issn><eissn>1878-5921</eissn><abstract>To determine the most reliable comorbidity measure, we adapted and validated outcome-specific comorbidity scores to predict mortality and hospital charges using the comorbidities composing the Charlson and Elixhauser measures and the combination of these two used in developing Gagne's combined comorbidity scores (CC, EC, and GC, respectively).
We divided cases of patients discharged in 2016–17 from the Diagnosis Procedure Combination database (n = 2,671,749) into two: one to derive weights for the scores, and the other for validation. We further validated them in subgroups, such as that with a selected diagnosis.
The c-statistics of the models predicting in-hospital mortality using new mortality scores using the CC, EC, and GC were 0.780, 0.795, and 0.794, respectively. Among them, that using the EC showed the best calibration. To predict hospital charges and the length of hospital stay (LOS), the models using variables indicating the GC performed the best. The performances of the mortality and expenditure scores were considerably different in predicting each outcome.
The new score using the EC performed the best in predicting in-hospital mortality for most situations. For hospital charges and the LOS, the binary variables of the GC showed the best results. The outcome-specific comorbidity scores should be considered for different outcomes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32540387</pmid><doi>10.1016/j.jclinepi.2020.06.011</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-4356 |
ispartof | Journal of clinical epidemiology, 2020-10, Vol.126, p.141-153 |
issn | 0895-4356 1878-5921 |
language | eng |
recordid | cdi_proquest_miscellaneous_2414006745 |
source | MEDLINE; ScienceDirect; ProQuest Central UK/Ireland |
subjects | Adaptation Aged Aged, 80 and over Charlson Classification Comorbidity Data Management - methods Databases, Factual - statistics & numerical data Delivery of Health Care - economics Diagnosis Elixhauser Epidemiology Expenditures Fees and Charges - statistics & numerical data Female Generalized linear models Hospital charges Hospital Mortality - trends Hospitals Humans In-hospital mortality Length of hospital stay Length of Stay - statistics & numerical data Male Middle Aged Mortality Outcome Assessment, Health Care Patient Discharge Population Predictive Value of Tests Prospective payment systems Statistical analysis Subgroups Variables |
title | New outcome-specific comorbidity scores excelled in predicting in-hospital mortality and healthcare charges in administrative databases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A38%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20outcome-specific%20comorbidity%20scores%20excelled%20in%20predicting%20in-hospital%20mortality%20and%20healthcare%20charges%20in%20administrative%20databases&rft.jtitle=Journal%20of%20clinical%20epidemiology&rft.au=Shin,%20Jung-ho&rft.date=2020-10&rft.volume=126&rft.spage=141&rft.epage=153&rft.pages=141-153&rft.issn=0895-4356&rft.eissn=1878-5921&rft_id=info:doi/10.1016/j.jclinepi.2020.06.011&rft_dat=%3Cproquest_cross%3E2414006745%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2445353778&rft_id=info:pmid/32540387&rft_els_id=S0895435619307632&rfr_iscdi=true |