Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications

Dielectric ceramics are highly desired for electronic systems owing to their fast discharge speed and excellent fatigue resistance. However, the low energy density resulting from the low breakdown electric field leads to inferior volumetric efficiency, which is the main challenge for practical appli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2020-09, Vol.19 (9), p.999-1005
Hauptverfasser: Li, Jinglei, Shen, Zhonghui, Chen, Xianghua, Yang, Shuai, Zhou, Wenlong, Wang, Mingwen, Wang, Linghang, Kou, Qiangwei, Liu, Yingchun, Li, Qun, Xu, Zhuo, Chang, Yunfei, Zhang, Shujun, Li, Fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1005
container_issue 9
container_start_page 999
container_title Nature materials
container_volume 19
creator Li, Jinglei
Shen, Zhonghui
Chen, Xianghua
Yang, Shuai
Zhou, Wenlong
Wang, Mingwen
Wang, Linghang
Kou, Qiangwei
Liu, Yingchun
Li, Qun
Xu, Zhuo
Chang, Yunfei
Zhang, Shujun
Li, Fei
description Dielectric ceramics are highly desired for electronic systems owing to their fast discharge speed and excellent fatigue resistance. However, the low energy density resulting from the low breakdown electric field leads to inferior volumetric efficiency, which is the main challenge for practical applications of dielectric ceramics. Here, we propose a strategy to increase the breakdown electric field and thus enhance the energy storage density of polycrystalline ceramics by controlling grain orientation. We fabricated high-quality -textured Na 0.5 Bi 0.5 TiO 3 –Sr 0.7 Bi 0.2 TiO 3 (NBT-SBT) ceramics, in which the strain induced by the electric field is substantially lowered, leading to a reduced failure probability and improved Weibull breakdown strength, on the order of 103 MV m −1 , an ~65% enhancement compared to their randomly oriented counterparts. The recoverable energy density of -textured NBT-SBT multilayer ceramics is up to 21.5 J cm −3 , outperforming state-of-the-art dielectric ceramics. The present research offers a route for designing dielectric ceramics with enhanced breakdown strength, which is expected to benefit a wide range of applications of dielectric ceramics for which high breakdown strength is required, such as high-voltage capacitors and electrocaloric solid-state cooling devices. The energy density of dielectric ceramic capacitors is limited by low breakdown fields. Here, by considering the anisotropy of electrostriction in perovskites, it is shown that -textured Na 0.5 Bi 0.5 TiO 3 –Sr 0.7 Bi 0.2 TiO 3 ceramics can sustain higher electrical fields and achieve an energy density of 21.5 J cm −3 .
doi_str_mv 10.1038/s41563-020-0704-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2414005858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2414005858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-5919743218955f2b2228a7849d95240502f4eb881069e484030e078eeb0417223</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVp6G43-QG9BEMvuSgdySNbPoaQj8JCLu2lF6H1jhcttuxINuz--2qz2wQC6UlCeuadYR7Gvgm4FpDrHxGFKnIOEjiUgHz3ic0FlgXHooDPp7sQUs7Y1xi3AFIoVXxhs1wqFFWOc_bnIVjneR8c-dGOrvec_MZ5okDrrJva0bV2TyGrKdjO1VltB1u7sQ8xa_qQkaew2WcxPdgNZXYYWle_5MRzdtbYNtLF6Vyw3_d3v24f-fLp4eftzZLXacyRq0pUJeZS6EqpRq6klNqWGqt1pSSCAtkgrbQWUFSEGiEHglITrQBFKWW-YFfH3CH0zxPF0XQu1tS21lM_RSNRIIDSSif0-zt020_Bp-kSVWKlS5EW-18qTxtHrQ9Z4kjVoY8xUGOG4Dob9kaAOegxRz0m6TEHPWaXai5PydOqo_VrxT8fCZBHIKYvv6Hw1vrj1L9SaZjd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2435634888</pqid></control><display><type>article</type><title>Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Li, Jinglei ; Shen, Zhonghui ; Chen, Xianghua ; Yang, Shuai ; Zhou, Wenlong ; Wang, Mingwen ; Wang, Linghang ; Kou, Qiangwei ; Liu, Yingchun ; Li, Qun ; Xu, Zhuo ; Chang, Yunfei ; Zhang, Shujun ; Li, Fei</creator><creatorcontrib>Li, Jinglei ; Shen, Zhonghui ; Chen, Xianghua ; Yang, Shuai ; Zhou, Wenlong ; Wang, Mingwen ; Wang, Linghang ; Kou, Qiangwei ; Liu, Yingchun ; Li, Qun ; Xu, Zhuo ; Chang, Yunfei ; Zhang, Shujun ; Li, Fei</creatorcontrib><description>Dielectric ceramics are highly desired for electronic systems owing to their fast discharge speed and excellent fatigue resistance. However, the low energy density resulting from the low breakdown electric field leads to inferior volumetric efficiency, which is the main challenge for practical applications of dielectric ceramics. Here, we propose a strategy to increase the breakdown electric field and thus enhance the energy storage density of polycrystalline ceramics by controlling grain orientation. We fabricated high-quality -textured Na 0.5 Bi 0.5 TiO 3 –Sr 0.7 Bi 0.2 TiO 3 (NBT-SBT) ceramics, in which the strain induced by the electric field is substantially lowered, leading to a reduced failure probability and improved Weibull breakdown strength, on the order of 103 MV m −1 , an ~65% enhancement compared to their randomly oriented counterparts. The recoverable energy density of -textured NBT-SBT multilayer ceramics is up to 21.5 J cm −3 , outperforming state-of-the-art dielectric ceramics. The present research offers a route for designing dielectric ceramics with enhanced breakdown strength, which is expected to benefit a wide range of applications of dielectric ceramics for which high breakdown strength is required, such as high-voltage capacitors and electrocaloric solid-state cooling devices. The energy density of dielectric ceramic capacitors is limited by low breakdown fields. Here, by considering the anisotropy of electrostriction in perovskites, it is shown that -textured Na 0.5 Bi 0.5 TiO 3 –Sr 0.7 Bi 0.2 TiO 3 ceramics can sustain higher electrical fields and achieve an energy density of 21.5 J cm −3 .</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-020-0704-x</identifier><identifier>PMID: 32541934</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005/1007 ; 639/301/119/996 ; 639/301/299 ; Anisotropy ; Biomaterials ; Bismuth titanate ; Capacitors ; Ceramics ; Chemistry and Materials Science ; Condensed Matter Physics ; Dielectric breakdown ; Dielectric strength ; Electric fields ; Electronic systems ; Electrostriction ; Energy ; Energy storage ; Fatigue strength ; Flux density ; Grain orientation ; Materials Science ; Multilayers ; Nanotechnology ; Optical and Electronic Materials ; Perovskites ; Volumetric efficiency</subject><ispartof>Nature materials, 2020-09, Vol.19 (9), p.999-1005</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-5919743218955f2b2228a7849d95240502f4eb881069e484030e078eeb0417223</citedby><cites>FETCH-LOGICAL-c466t-5919743218955f2b2228a7849d95240502f4eb881069e484030e078eeb0417223</cites><orcidid>0000-0002-7603-9521 ; 0000-0002-4013-0059 ; 0000-0003-2830-5730 ; 0000-0001-6139-6887 ; 0000-0002-4572-0322</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-020-0704-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-020-0704-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32541934$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jinglei</creatorcontrib><creatorcontrib>Shen, Zhonghui</creatorcontrib><creatorcontrib>Chen, Xianghua</creatorcontrib><creatorcontrib>Yang, Shuai</creatorcontrib><creatorcontrib>Zhou, Wenlong</creatorcontrib><creatorcontrib>Wang, Mingwen</creatorcontrib><creatorcontrib>Wang, Linghang</creatorcontrib><creatorcontrib>Kou, Qiangwei</creatorcontrib><creatorcontrib>Liu, Yingchun</creatorcontrib><creatorcontrib>Li, Qun</creatorcontrib><creatorcontrib>Xu, Zhuo</creatorcontrib><creatorcontrib>Chang, Yunfei</creatorcontrib><creatorcontrib>Zhang, Shujun</creatorcontrib><creatorcontrib>Li, Fei</creatorcontrib><title>Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>Dielectric ceramics are highly desired for electronic systems owing to their fast discharge speed and excellent fatigue resistance. However, the low energy density resulting from the low breakdown electric field leads to inferior volumetric efficiency, which is the main challenge for practical applications of dielectric ceramics. Here, we propose a strategy to increase the breakdown electric field and thus enhance the energy storage density of polycrystalline ceramics by controlling grain orientation. We fabricated high-quality -textured Na 0.5 Bi 0.5 TiO 3 –Sr 0.7 Bi 0.2 TiO 3 (NBT-SBT) ceramics, in which the strain induced by the electric field is substantially lowered, leading to a reduced failure probability and improved Weibull breakdown strength, on the order of 103 MV m −1 , an ~65% enhancement compared to their randomly oriented counterparts. The recoverable energy density of -textured NBT-SBT multilayer ceramics is up to 21.5 J cm −3 , outperforming state-of-the-art dielectric ceramics. The present research offers a route for designing dielectric ceramics with enhanced breakdown strength, which is expected to benefit a wide range of applications of dielectric ceramics for which high breakdown strength is required, such as high-voltage capacitors and electrocaloric solid-state cooling devices. The energy density of dielectric ceramic capacitors is limited by low breakdown fields. Here, by considering the anisotropy of electrostriction in perovskites, it is shown that -textured Na 0.5 Bi 0.5 TiO 3 –Sr 0.7 Bi 0.2 TiO 3 ceramics can sustain higher electrical fields and achieve an energy density of 21.5 J cm −3 .</description><subject>639/301/1005/1007</subject><subject>639/301/119/996</subject><subject>639/301/299</subject><subject>Anisotropy</subject><subject>Biomaterials</subject><subject>Bismuth titanate</subject><subject>Capacitors</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Dielectric breakdown</subject><subject>Dielectric strength</subject><subject>Electric fields</subject><subject>Electronic systems</subject><subject>Electrostriction</subject><subject>Energy</subject><subject>Energy storage</subject><subject>Fatigue strength</subject><subject>Flux density</subject><subject>Grain orientation</subject><subject>Materials Science</subject><subject>Multilayers</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Perovskites</subject><subject>Volumetric efficiency</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1r3DAQhkVp6G43-QG9BEMvuSgdySNbPoaQj8JCLu2lF6H1jhcttuxINuz--2qz2wQC6UlCeuadYR7Gvgm4FpDrHxGFKnIOEjiUgHz3ic0FlgXHooDPp7sQUs7Y1xi3AFIoVXxhs1wqFFWOc_bnIVjneR8c-dGOrvec_MZ5okDrrJva0bV2TyGrKdjO1VltB1u7sQ8xa_qQkaew2WcxPdgNZXYYWle_5MRzdtbYNtLF6Vyw3_d3v24f-fLp4eftzZLXacyRq0pUJeZS6EqpRq6klNqWGqt1pSSCAtkgrbQWUFSEGiEHglITrQBFKWW-YFfH3CH0zxPF0XQu1tS21lM_RSNRIIDSSif0-zt020_Bp-kSVWKlS5EW-18qTxtHrQ9Z4kjVoY8xUGOG4Dob9kaAOegxRz0m6TEHPWaXai5PydOqo_VrxT8fCZBHIKYvv6Hw1vrj1L9SaZjd</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Li, Jinglei</creator><creator>Shen, Zhonghui</creator><creator>Chen, Xianghua</creator><creator>Yang, Shuai</creator><creator>Zhou, Wenlong</creator><creator>Wang, Mingwen</creator><creator>Wang, Linghang</creator><creator>Kou, Qiangwei</creator><creator>Liu, Yingchun</creator><creator>Li, Qun</creator><creator>Xu, Zhuo</creator><creator>Chang, Yunfei</creator><creator>Zhang, Shujun</creator><creator>Li, Fei</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7603-9521</orcidid><orcidid>https://orcid.org/0000-0002-4013-0059</orcidid><orcidid>https://orcid.org/0000-0003-2830-5730</orcidid><orcidid>https://orcid.org/0000-0001-6139-6887</orcidid><orcidid>https://orcid.org/0000-0002-4572-0322</orcidid></search><sort><creationdate>20200901</creationdate><title>Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications</title><author>Li, Jinglei ; Shen, Zhonghui ; Chen, Xianghua ; Yang, Shuai ; Zhou, Wenlong ; Wang, Mingwen ; Wang, Linghang ; Kou, Qiangwei ; Liu, Yingchun ; Li, Qun ; Xu, Zhuo ; Chang, Yunfei ; Zhang, Shujun ; Li, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-5919743218955f2b2228a7849d95240502f4eb881069e484030e078eeb0417223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/1005/1007</topic><topic>639/301/119/996</topic><topic>639/301/299</topic><topic>Anisotropy</topic><topic>Biomaterials</topic><topic>Bismuth titanate</topic><topic>Capacitors</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Dielectric breakdown</topic><topic>Dielectric strength</topic><topic>Electric fields</topic><topic>Electronic systems</topic><topic>Electrostriction</topic><topic>Energy</topic><topic>Energy storage</topic><topic>Fatigue strength</topic><topic>Flux density</topic><topic>Grain orientation</topic><topic>Materials Science</topic><topic>Multilayers</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Perovskites</topic><topic>Volumetric efficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jinglei</creatorcontrib><creatorcontrib>Shen, Zhonghui</creatorcontrib><creatorcontrib>Chen, Xianghua</creatorcontrib><creatorcontrib>Yang, Shuai</creatorcontrib><creatorcontrib>Zhou, Wenlong</creatorcontrib><creatorcontrib>Wang, Mingwen</creatorcontrib><creatorcontrib>Wang, Linghang</creatorcontrib><creatorcontrib>Kou, Qiangwei</creatorcontrib><creatorcontrib>Liu, Yingchun</creatorcontrib><creatorcontrib>Li, Qun</creatorcontrib><creatorcontrib>Xu, Zhuo</creatorcontrib><creatorcontrib>Chang, Yunfei</creatorcontrib><creatorcontrib>Zhang, Shujun</creatorcontrib><creatorcontrib>Li, Fei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jinglei</au><au>Shen, Zhonghui</au><au>Chen, Xianghua</au><au>Yang, Shuai</au><au>Zhou, Wenlong</au><au>Wang, Mingwen</au><au>Wang, Linghang</au><au>Kou, Qiangwei</au><au>Liu, Yingchun</au><au>Li, Qun</au><au>Xu, Zhuo</au><au>Chang, Yunfei</au><au>Zhang, Shujun</au><au>Li, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>19</volume><issue>9</issue><spage>999</spage><epage>1005</epage><pages>999-1005</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Dielectric ceramics are highly desired for electronic systems owing to their fast discharge speed and excellent fatigue resistance. However, the low energy density resulting from the low breakdown electric field leads to inferior volumetric efficiency, which is the main challenge for practical applications of dielectric ceramics. Here, we propose a strategy to increase the breakdown electric field and thus enhance the energy storage density of polycrystalline ceramics by controlling grain orientation. We fabricated high-quality -textured Na 0.5 Bi 0.5 TiO 3 –Sr 0.7 Bi 0.2 TiO 3 (NBT-SBT) ceramics, in which the strain induced by the electric field is substantially lowered, leading to a reduced failure probability and improved Weibull breakdown strength, on the order of 103 MV m −1 , an ~65% enhancement compared to their randomly oriented counterparts. The recoverable energy density of -textured NBT-SBT multilayer ceramics is up to 21.5 J cm −3 , outperforming state-of-the-art dielectric ceramics. The present research offers a route for designing dielectric ceramics with enhanced breakdown strength, which is expected to benefit a wide range of applications of dielectric ceramics for which high breakdown strength is required, such as high-voltage capacitors and electrocaloric solid-state cooling devices. The energy density of dielectric ceramic capacitors is limited by low breakdown fields. Here, by considering the anisotropy of electrostriction in perovskites, it is shown that -textured Na 0.5 Bi 0.5 TiO 3 –Sr 0.7 Bi 0.2 TiO 3 ceramics can sustain higher electrical fields and achieve an energy density of 21.5 J cm −3 .</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32541934</pmid><doi>10.1038/s41563-020-0704-x</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7603-9521</orcidid><orcidid>https://orcid.org/0000-0002-4013-0059</orcidid><orcidid>https://orcid.org/0000-0003-2830-5730</orcidid><orcidid>https://orcid.org/0000-0001-6139-6887</orcidid><orcidid>https://orcid.org/0000-0002-4572-0322</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2020-09, Vol.19 (9), p.999-1005
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_2414005858
source SpringerLink Journals; Nature Journals Online
subjects 639/301/1005/1007
639/301/119/996
639/301/299
Anisotropy
Biomaterials
Bismuth titanate
Capacitors
Ceramics
Chemistry and Materials Science
Condensed Matter Physics
Dielectric breakdown
Dielectric strength
Electric fields
Electronic systems
Electrostriction
Energy
Energy storage
Fatigue strength
Flux density
Grain orientation
Materials Science
Multilayers
Nanotechnology
Optical and Electronic Materials
Perovskites
Volumetric efficiency
title Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A59%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grain-orientation-engineered%20multilayer%20ceramic%20capacitors%20for%20energy%20storage%20applications&rft.jtitle=Nature%20materials&rft.au=Li,%20Jinglei&rft.date=2020-09-01&rft.volume=19&rft.issue=9&rft.spage=999&rft.epage=1005&rft.pages=999-1005&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-020-0704-x&rft_dat=%3Cproquest_cross%3E2414005858%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2435634888&rft_id=info:pmid/32541934&rfr_iscdi=true