Mechanisms of Sodium-Glucose Cotransporter 2 Inhibition: Insights From Large-Scale Proteomics
To assess the effects of empagliflozin, a selective sodium-glucose cotransporter 2 (SGLT2) inhibitor, on broad biological systems through proteomics. Aptamer-based proteomics was used to quantify 3,713 proteins in 144 paired plasma samples obtained from 72 participants across the spectrum of glucose...
Gespeichert in:
Veröffentlicht in: | Diabetes care 2020-09, Vol.43 (9), p.2183-2189 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2189 |
---|---|
container_issue | 9 |
container_start_page | 2183 |
container_title | Diabetes care |
container_volume | 43 |
creator | Ferrannini, Ele Murthy, Ashwin C Lee, Yong-Ho Muscelli, Elza Weiss, Sophie Ostroff, Rachel M Sattar, Naveed Williams, Stephen A Ganz, Peter |
description | To assess the effects of empagliflozin, a selective sodium-glucose cotransporter 2 (SGLT2) inhibitor, on broad biological systems through proteomics.
Aptamer-based proteomics was used to quantify 3,713 proteins in 144 paired plasma samples obtained from 72 participants across the spectrum of glucose tolerance before and after 4 weeks of empagliflozin 25 mg/day. The biology of the plasma proteins significantly changed by empagliflozin (at false discovery rate-corrected
< 0.05) was discerned through Ingenuity Pathway Analysis.
Empagliflozin significantly affected levels of 43 proteins, 6 related to cardiomyocyte function (fatty acid-binding protein 3 and 4 [FABPA], neurotrophic receptor tyrosine kinase, renin, thrombospondin 4, and leptin receptor), 5 to iron handling (ferritin heavy chain 1, transferrin receptor protein 1, neogenin, growth differentiation factor 2 [GDF2], and β2-microglobulin), and 1 to sphingosine/ceramide metabolism (neutral ceramidase), a known pathway of cardiovascular disease. Among the protein changes achieving the strongest statistical significance, insulin-like binding factor protein-1 (IGFBP-1), transgelin-2, FABPA, GDF15, and sulphydryl oxidase 2 precursor were increased, while ferritin, thrombospondin 3, and Rearranged during Transfection (RET) were decreased by empagliflozin administration.
SGLT2 inhibition is associated, directly or indirectly, with multiple biological effects, including changes in markers of cardiomyocyte contraction/relaxation, iron handling, and other metabolic and renal targets. The most significant differences were detected in protein species (GDF15, ferritin, IGFBP-1, and FABP) potentially related to the clinical and metabolic changes that were actually measured in the same patients. These novel results may inform further studies using targeted proteomics and a prospective design. |
doi_str_mv | 10.2337/dc20-0456 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2412994783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2412994783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-ca36459053e2ec9260429778da5cf83da1019c9c1f9ac64aec6d9e7cb5fa75e73</originalsourceid><addsrcrecordid>eNpd0M9LwzAUwPEgipvTg_-AFLzoIZqfTeNNhpuDicL0KCVLX7eMtplJe_C_t2PTg6f3Dh8ejy9Cl5TcMc7VfWEZwUTI9AgNqeYSSymyYzQkVGgstWYDdBbjhhAiRJadogFnkqmMkCH6fAG7No2LdUx8mSx84boaT6vO-gjJ2LfBNHHrQwshYcmsWbula51vHvo9utW6jckk-DqZm7ACvLCmguQt-BZ87Ww8RyelqSJcHOYIfUye3sfPeP46nY0f59gKKlpsDU-F1ERyYGA1S4lgWqmsMNKWGS8MJVRbbWmpjU2FAZsWGpRdytIoCYqP0M3-7jb4rw5im9cuWqgq04DvYs4EZVoLlfGeXv-jG9-Fpv-uV0Kkimspe3W7Vzb4GAOU-Ta42oTvnJJ81zzfNc93zXt7dbjYLWso_uRvZP4DpXR7kQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444673955</pqid></control><display><type>article</type><title>Mechanisms of Sodium-Glucose Cotransporter 2 Inhibition: Insights From Large-Scale Proteomics</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ferrannini, Ele ; Murthy, Ashwin C ; Lee, Yong-Ho ; Muscelli, Elza ; Weiss, Sophie ; Ostroff, Rachel M ; Sattar, Naveed ; Williams, Stephen A ; Ganz, Peter</creator><creatorcontrib>Ferrannini, Ele ; Murthy, Ashwin C ; Lee, Yong-Ho ; Muscelli, Elza ; Weiss, Sophie ; Ostroff, Rachel M ; Sattar, Naveed ; Williams, Stephen A ; Ganz, Peter</creatorcontrib><description>To assess the effects of empagliflozin, a selective sodium-glucose cotransporter 2 (SGLT2) inhibitor, on broad biological systems through proteomics.
Aptamer-based proteomics was used to quantify 3,713 proteins in 144 paired plasma samples obtained from 72 participants across the spectrum of glucose tolerance before and after 4 weeks of empagliflozin 25 mg/day. The biology of the plasma proteins significantly changed by empagliflozin (at false discovery rate-corrected
< 0.05) was discerned through Ingenuity Pathway Analysis.
Empagliflozin significantly affected levels of 43 proteins, 6 related to cardiomyocyte function (fatty acid-binding protein 3 and 4 [FABPA], neurotrophic receptor tyrosine kinase, renin, thrombospondin 4, and leptin receptor), 5 to iron handling (ferritin heavy chain 1, transferrin receptor protein 1, neogenin, growth differentiation factor 2 [GDF2], and β2-microglobulin), and 1 to sphingosine/ceramide metabolism (neutral ceramidase), a known pathway of cardiovascular disease. Among the protein changes achieving the strongest statistical significance, insulin-like binding factor protein-1 (IGFBP-1), transgelin-2, FABPA, GDF15, and sulphydryl oxidase 2 precursor were increased, while ferritin, thrombospondin 3, and Rearranged during Transfection (RET) were decreased by empagliflozin administration.
SGLT2 inhibition is associated, directly or indirectly, with multiple biological effects, including changes in markers of cardiomyocyte contraction/relaxation, iron handling, and other metabolic and renal targets. The most significant differences were detected in protein species (GDF15, ferritin, IGFBP-1, and FABP) potentially related to the clinical and metabolic changes that were actually measured in the same patients. These novel results may inform further studies using targeted proteomics and a prospective design.</description><identifier>ISSN: 0149-5992</identifier><identifier>EISSN: 1935-5548</identifier><identifier>DOI: 10.2337/dc20-0456</identifier><identifier>PMID: 32527800</identifier><language>eng</language><publisher>United States: American Diabetes Association</publisher><subject>Aged ; Antidiabetics ; Aptamers ; Benzhydryl Compounds - pharmacology ; Biological effects ; Biomarkers - analysis ; Biomarkers - blood ; Blood Proteins - drug effects ; Blood Proteins - metabolism ; Cardiomyocytes ; Cardiovascular diseases ; Ceramidase ; Ceramide ; Contraction ; Fatty acid-binding protein ; Fatty acids ; Female ; Ferritin ; Glucose ; Glucose - metabolism ; Glucose tolerance ; Glucosides - pharmacology ; Humans ; Hypoglycemic Agents - pharmacology ; Insulin ; Insulin-like growth factor-binding protein 1 ; Iron ; Kinases ; Male ; Metabolism ; Middle Aged ; Plasma proteins ; Prospective Studies ; Protein-tyrosine kinase receptors ; Proteins ; Proteome - analysis ; Proteome - drug effects ; Proteome - metabolism ; Proteomics ; Proteomics - methods ; Receptors ; Renin ; Research design ; Ret protein ; Signal Transduction - drug effects ; Sodium ; Sodium-glucose cotransporter ; Sodium-Glucose Transporter 2 Inhibitors - pharmacology ; Statistical methods ; Thrombospondin ; Transfection ; Transferrin ; Transferrins ; Tyrosine ; β2 Microglobulin</subject><ispartof>Diabetes care, 2020-09, Vol.43 (9), p.2183-2189</ispartof><rights>2020 by the American Diabetes Association.</rights><rights>Copyright American Diabetes Association Sep 1, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-ca36459053e2ec9260429778da5cf83da1019c9c1f9ac64aec6d9e7cb5fa75e73</citedby><cites>FETCH-LOGICAL-c414t-ca36459053e2ec9260429778da5cf83da1019c9c1f9ac64aec6d9e7cb5fa75e73</cites><orcidid>0000-0002-1384-1584 ; 0000-0002-1604-2593</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32527800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferrannini, Ele</creatorcontrib><creatorcontrib>Murthy, Ashwin C</creatorcontrib><creatorcontrib>Lee, Yong-Ho</creatorcontrib><creatorcontrib>Muscelli, Elza</creatorcontrib><creatorcontrib>Weiss, Sophie</creatorcontrib><creatorcontrib>Ostroff, Rachel M</creatorcontrib><creatorcontrib>Sattar, Naveed</creatorcontrib><creatorcontrib>Williams, Stephen A</creatorcontrib><creatorcontrib>Ganz, Peter</creatorcontrib><title>Mechanisms of Sodium-Glucose Cotransporter 2 Inhibition: Insights From Large-Scale Proteomics</title><title>Diabetes care</title><addtitle>Diabetes Care</addtitle><description>To assess the effects of empagliflozin, a selective sodium-glucose cotransporter 2 (SGLT2) inhibitor, on broad biological systems through proteomics.
Aptamer-based proteomics was used to quantify 3,713 proteins in 144 paired plasma samples obtained from 72 participants across the spectrum of glucose tolerance before and after 4 weeks of empagliflozin 25 mg/day. The biology of the plasma proteins significantly changed by empagliflozin (at false discovery rate-corrected
< 0.05) was discerned through Ingenuity Pathway Analysis.
Empagliflozin significantly affected levels of 43 proteins, 6 related to cardiomyocyte function (fatty acid-binding protein 3 and 4 [FABPA], neurotrophic receptor tyrosine kinase, renin, thrombospondin 4, and leptin receptor), 5 to iron handling (ferritin heavy chain 1, transferrin receptor protein 1, neogenin, growth differentiation factor 2 [GDF2], and β2-microglobulin), and 1 to sphingosine/ceramide metabolism (neutral ceramidase), a known pathway of cardiovascular disease. Among the protein changes achieving the strongest statistical significance, insulin-like binding factor protein-1 (IGFBP-1), transgelin-2, FABPA, GDF15, and sulphydryl oxidase 2 precursor were increased, while ferritin, thrombospondin 3, and Rearranged during Transfection (RET) were decreased by empagliflozin administration.
SGLT2 inhibition is associated, directly or indirectly, with multiple biological effects, including changes in markers of cardiomyocyte contraction/relaxation, iron handling, and other metabolic and renal targets. The most significant differences were detected in protein species (GDF15, ferritin, IGFBP-1, and FABP) potentially related to the clinical and metabolic changes that were actually measured in the same patients. These novel results may inform further studies using targeted proteomics and a prospective design.</description><subject>Aged</subject><subject>Antidiabetics</subject><subject>Aptamers</subject><subject>Benzhydryl Compounds - pharmacology</subject><subject>Biological effects</subject><subject>Biomarkers - analysis</subject><subject>Biomarkers - blood</subject><subject>Blood Proteins - drug effects</subject><subject>Blood Proteins - metabolism</subject><subject>Cardiomyocytes</subject><subject>Cardiovascular diseases</subject><subject>Ceramidase</subject><subject>Ceramide</subject><subject>Contraction</subject><subject>Fatty acid-binding protein</subject><subject>Fatty acids</subject><subject>Female</subject><subject>Ferritin</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Glucose tolerance</subject><subject>Glucosides - pharmacology</subject><subject>Humans</subject><subject>Hypoglycemic Agents - pharmacology</subject><subject>Insulin</subject><subject>Insulin-like growth factor-binding protein 1</subject><subject>Iron</subject><subject>Kinases</subject><subject>Male</subject><subject>Metabolism</subject><subject>Middle Aged</subject><subject>Plasma proteins</subject><subject>Prospective Studies</subject><subject>Protein-tyrosine kinase receptors</subject><subject>Proteins</subject><subject>Proteome - analysis</subject><subject>Proteome - drug effects</subject><subject>Proteome - metabolism</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>Receptors</subject><subject>Renin</subject><subject>Research design</subject><subject>Ret protein</subject><subject>Signal Transduction - drug effects</subject><subject>Sodium</subject><subject>Sodium-glucose cotransporter</subject><subject>Sodium-Glucose Transporter 2 Inhibitors - pharmacology</subject><subject>Statistical methods</subject><subject>Thrombospondin</subject><subject>Transfection</subject><subject>Transferrin</subject><subject>Transferrins</subject><subject>Tyrosine</subject><subject>β2 Microglobulin</subject><issn>0149-5992</issn><issn>1935-5548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0M9LwzAUwPEgipvTg_-AFLzoIZqfTeNNhpuDicL0KCVLX7eMtplJe_C_t2PTg6f3Dh8ejy9Cl5TcMc7VfWEZwUTI9AgNqeYSSymyYzQkVGgstWYDdBbjhhAiRJadogFnkqmMkCH6fAG7No2LdUx8mSx84boaT6vO-gjJ2LfBNHHrQwshYcmsWbula51vHvo9utW6jckk-DqZm7ACvLCmguQt-BZ87Ww8RyelqSJcHOYIfUye3sfPeP46nY0f59gKKlpsDU-F1ERyYGA1S4lgWqmsMNKWGS8MJVRbbWmpjU2FAZsWGpRdytIoCYqP0M3-7jb4rw5im9cuWqgq04DvYs4EZVoLlfGeXv-jG9-Fpv-uV0Kkimspe3W7Vzb4GAOU-Ta42oTvnJJ81zzfNc93zXt7dbjYLWso_uRvZP4DpXR7kQ</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Ferrannini, Ele</creator><creator>Murthy, Ashwin C</creator><creator>Lee, Yong-Ho</creator><creator>Muscelli, Elza</creator><creator>Weiss, Sophie</creator><creator>Ostroff, Rachel M</creator><creator>Sattar, Naveed</creator><creator>Williams, Stephen A</creator><creator>Ganz, Peter</creator><general>American Diabetes Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1384-1584</orcidid><orcidid>https://orcid.org/0000-0002-1604-2593</orcidid></search><sort><creationdate>20200901</creationdate><title>Mechanisms of Sodium-Glucose Cotransporter 2 Inhibition: Insights From Large-Scale Proteomics</title><author>Ferrannini, Ele ; Murthy, Ashwin C ; Lee, Yong-Ho ; Muscelli, Elza ; Weiss, Sophie ; Ostroff, Rachel M ; Sattar, Naveed ; Williams, Stephen A ; Ganz, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-ca36459053e2ec9260429778da5cf83da1019c9c1f9ac64aec6d9e7cb5fa75e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aged</topic><topic>Antidiabetics</topic><topic>Aptamers</topic><topic>Benzhydryl Compounds - pharmacology</topic><topic>Biological effects</topic><topic>Biomarkers - analysis</topic><topic>Biomarkers - blood</topic><topic>Blood Proteins - drug effects</topic><topic>Blood Proteins - metabolism</topic><topic>Cardiomyocytes</topic><topic>Cardiovascular diseases</topic><topic>Ceramidase</topic><topic>Ceramide</topic><topic>Contraction</topic><topic>Fatty acid-binding protein</topic><topic>Fatty acids</topic><topic>Female</topic><topic>Ferritin</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Glucose tolerance</topic><topic>Glucosides - pharmacology</topic><topic>Humans</topic><topic>Hypoglycemic Agents - pharmacology</topic><topic>Insulin</topic><topic>Insulin-like growth factor-binding protein 1</topic><topic>Iron</topic><topic>Kinases</topic><topic>Male</topic><topic>Metabolism</topic><topic>Middle Aged</topic><topic>Plasma proteins</topic><topic>Prospective Studies</topic><topic>Protein-tyrosine kinase receptors</topic><topic>Proteins</topic><topic>Proteome - analysis</topic><topic>Proteome - drug effects</topic><topic>Proteome - metabolism</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>Receptors</topic><topic>Renin</topic><topic>Research design</topic><topic>Ret protein</topic><topic>Signal Transduction - drug effects</topic><topic>Sodium</topic><topic>Sodium-glucose cotransporter</topic><topic>Sodium-Glucose Transporter 2 Inhibitors - pharmacology</topic><topic>Statistical methods</topic><topic>Thrombospondin</topic><topic>Transfection</topic><topic>Transferrin</topic><topic>Transferrins</topic><topic>Tyrosine</topic><topic>β2 Microglobulin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferrannini, Ele</creatorcontrib><creatorcontrib>Murthy, Ashwin C</creatorcontrib><creatorcontrib>Lee, Yong-Ho</creatorcontrib><creatorcontrib>Muscelli, Elza</creatorcontrib><creatorcontrib>Weiss, Sophie</creatorcontrib><creatorcontrib>Ostroff, Rachel M</creatorcontrib><creatorcontrib>Sattar, Naveed</creatorcontrib><creatorcontrib>Williams, Stephen A</creatorcontrib><creatorcontrib>Ganz, Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Diabetes care</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferrannini, Ele</au><au>Murthy, Ashwin C</au><au>Lee, Yong-Ho</au><au>Muscelli, Elza</au><au>Weiss, Sophie</au><au>Ostroff, Rachel M</au><au>Sattar, Naveed</au><au>Williams, Stephen A</au><au>Ganz, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms of Sodium-Glucose Cotransporter 2 Inhibition: Insights From Large-Scale Proteomics</atitle><jtitle>Diabetes care</jtitle><addtitle>Diabetes Care</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>43</volume><issue>9</issue><spage>2183</spage><epage>2189</epage><pages>2183-2189</pages><issn>0149-5992</issn><eissn>1935-5548</eissn><abstract>To assess the effects of empagliflozin, a selective sodium-glucose cotransporter 2 (SGLT2) inhibitor, on broad biological systems through proteomics.
Aptamer-based proteomics was used to quantify 3,713 proteins in 144 paired plasma samples obtained from 72 participants across the spectrum of glucose tolerance before and after 4 weeks of empagliflozin 25 mg/day. The biology of the plasma proteins significantly changed by empagliflozin (at false discovery rate-corrected
< 0.05) was discerned through Ingenuity Pathway Analysis.
Empagliflozin significantly affected levels of 43 proteins, 6 related to cardiomyocyte function (fatty acid-binding protein 3 and 4 [FABPA], neurotrophic receptor tyrosine kinase, renin, thrombospondin 4, and leptin receptor), 5 to iron handling (ferritin heavy chain 1, transferrin receptor protein 1, neogenin, growth differentiation factor 2 [GDF2], and β2-microglobulin), and 1 to sphingosine/ceramide metabolism (neutral ceramidase), a known pathway of cardiovascular disease. Among the protein changes achieving the strongest statistical significance, insulin-like binding factor protein-1 (IGFBP-1), transgelin-2, FABPA, GDF15, and sulphydryl oxidase 2 precursor were increased, while ferritin, thrombospondin 3, and Rearranged during Transfection (RET) were decreased by empagliflozin administration.
SGLT2 inhibition is associated, directly or indirectly, with multiple biological effects, including changes in markers of cardiomyocyte contraction/relaxation, iron handling, and other metabolic and renal targets. The most significant differences were detected in protein species (GDF15, ferritin, IGFBP-1, and FABP) potentially related to the clinical and metabolic changes that were actually measured in the same patients. These novel results may inform further studies using targeted proteomics and a prospective design.</abstract><cop>United States</cop><pub>American Diabetes Association</pub><pmid>32527800</pmid><doi>10.2337/dc20-0456</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1384-1584</orcidid><orcidid>https://orcid.org/0000-0002-1604-2593</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0149-5992 |
ispartof | Diabetes care, 2020-09, Vol.43 (9), p.2183-2189 |
issn | 0149-5992 1935-5548 |
language | eng |
recordid | cdi_proquest_miscellaneous_2412994783 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals |
subjects | Aged Antidiabetics Aptamers Benzhydryl Compounds - pharmacology Biological effects Biomarkers - analysis Biomarkers - blood Blood Proteins - drug effects Blood Proteins - metabolism Cardiomyocytes Cardiovascular diseases Ceramidase Ceramide Contraction Fatty acid-binding protein Fatty acids Female Ferritin Glucose Glucose - metabolism Glucose tolerance Glucosides - pharmacology Humans Hypoglycemic Agents - pharmacology Insulin Insulin-like growth factor-binding protein 1 Iron Kinases Male Metabolism Middle Aged Plasma proteins Prospective Studies Protein-tyrosine kinase receptors Proteins Proteome - analysis Proteome - drug effects Proteome - metabolism Proteomics Proteomics - methods Receptors Renin Research design Ret protein Signal Transduction - drug effects Sodium Sodium-glucose cotransporter Sodium-Glucose Transporter 2 Inhibitors - pharmacology Statistical methods Thrombospondin Transfection Transferrin Transferrins Tyrosine β2 Microglobulin |
title | Mechanisms of Sodium-Glucose Cotransporter 2 Inhibition: Insights From Large-Scale Proteomics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A48%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20of%20Sodium-Glucose%20Cotransporter%202%20Inhibition:%20Insights%20From%20Large-Scale%20Proteomics&rft.jtitle=Diabetes%20care&rft.au=Ferrannini,%20Ele&rft.date=2020-09-01&rft.volume=43&rft.issue=9&rft.spage=2183&rft.epage=2189&rft.pages=2183-2189&rft.issn=0149-5992&rft.eissn=1935-5548&rft_id=info:doi/10.2337/dc20-0456&rft_dat=%3Cproquest_cross%3E2412994783%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444673955&rft_id=info:pmid/32527800&rfr_iscdi=true |