Mechanisms of Sodium-Glucose Cotransporter 2 Inhibition: Insights From Large-Scale Proteomics

To assess the effects of empagliflozin, a selective sodium-glucose cotransporter 2 (SGLT2) inhibitor, on broad biological systems through proteomics. Aptamer-based proteomics was used to quantify 3,713 proteins in 144 paired plasma samples obtained from 72 participants across the spectrum of glucose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes care 2020-09, Vol.43 (9), p.2183-2189
Hauptverfasser: Ferrannini, Ele, Murthy, Ashwin C, Lee, Yong-Ho, Muscelli, Elza, Weiss, Sophie, Ostroff, Rachel M, Sattar, Naveed, Williams, Stephen A, Ganz, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2189
container_issue 9
container_start_page 2183
container_title Diabetes care
container_volume 43
creator Ferrannini, Ele
Murthy, Ashwin C
Lee, Yong-Ho
Muscelli, Elza
Weiss, Sophie
Ostroff, Rachel M
Sattar, Naveed
Williams, Stephen A
Ganz, Peter
description To assess the effects of empagliflozin, a selective sodium-glucose cotransporter 2 (SGLT2) inhibitor, on broad biological systems through proteomics. Aptamer-based proteomics was used to quantify 3,713 proteins in 144 paired plasma samples obtained from 72 participants across the spectrum of glucose tolerance before and after 4 weeks of empagliflozin 25 mg/day. The biology of the plasma proteins significantly changed by empagliflozin (at false discovery rate-corrected < 0.05) was discerned through Ingenuity Pathway Analysis. Empagliflozin significantly affected levels of 43 proteins, 6 related to cardiomyocyte function (fatty acid-binding protein 3 and 4 [FABPA], neurotrophic receptor tyrosine kinase, renin, thrombospondin 4, and leptin receptor), 5 to iron handling (ferritin heavy chain 1, transferrin receptor protein 1, neogenin, growth differentiation factor 2 [GDF2], and β2-microglobulin), and 1 to sphingosine/ceramide metabolism (neutral ceramidase), a known pathway of cardiovascular disease. Among the protein changes achieving the strongest statistical significance, insulin-like binding factor protein-1 (IGFBP-1), transgelin-2, FABPA, GDF15, and sulphydryl oxidase 2 precursor were increased, while ferritin, thrombospondin 3, and Rearranged during Transfection (RET) were decreased by empagliflozin administration. SGLT2 inhibition is associated, directly or indirectly, with multiple biological effects, including changes in markers of cardiomyocyte contraction/relaxation, iron handling, and other metabolic and renal targets. The most significant differences were detected in protein species (GDF15, ferritin, IGFBP-1, and FABP) potentially related to the clinical and metabolic changes that were actually measured in the same patients. These novel results may inform further studies using targeted proteomics and a prospective design.
doi_str_mv 10.2337/dc20-0456
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2412994783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2412994783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-ca36459053e2ec9260429778da5cf83da1019c9c1f9ac64aec6d9e7cb5fa75e73</originalsourceid><addsrcrecordid>eNpd0M9LwzAUwPEgipvTg_-AFLzoIZqfTeNNhpuDicL0KCVLX7eMtplJe_C_t2PTg6f3Dh8ejy9Cl5TcMc7VfWEZwUTI9AgNqeYSSymyYzQkVGgstWYDdBbjhhAiRJadogFnkqmMkCH6fAG7No2LdUx8mSx84boaT6vO-gjJ2LfBNHHrQwshYcmsWbula51vHvo9utW6jckk-DqZm7ACvLCmguQt-BZ87Ww8RyelqSJcHOYIfUye3sfPeP46nY0f59gKKlpsDU-F1ERyYGA1S4lgWqmsMNKWGS8MJVRbbWmpjU2FAZsWGpRdytIoCYqP0M3-7jb4rw5im9cuWqgq04DvYs4EZVoLlfGeXv-jG9-Fpv-uV0Kkimspe3W7Vzb4GAOU-Ta42oTvnJJ81zzfNc93zXt7dbjYLWso_uRvZP4DpXR7kQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444673955</pqid></control><display><type>article</type><title>Mechanisms of Sodium-Glucose Cotransporter 2 Inhibition: Insights From Large-Scale Proteomics</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ferrannini, Ele ; Murthy, Ashwin C ; Lee, Yong-Ho ; Muscelli, Elza ; Weiss, Sophie ; Ostroff, Rachel M ; Sattar, Naveed ; Williams, Stephen A ; Ganz, Peter</creator><creatorcontrib>Ferrannini, Ele ; Murthy, Ashwin C ; Lee, Yong-Ho ; Muscelli, Elza ; Weiss, Sophie ; Ostroff, Rachel M ; Sattar, Naveed ; Williams, Stephen A ; Ganz, Peter</creatorcontrib><description>To assess the effects of empagliflozin, a selective sodium-glucose cotransporter 2 (SGLT2) inhibitor, on broad biological systems through proteomics. Aptamer-based proteomics was used to quantify 3,713 proteins in 144 paired plasma samples obtained from 72 participants across the spectrum of glucose tolerance before and after 4 weeks of empagliflozin 25 mg/day. The biology of the plasma proteins significantly changed by empagliflozin (at false discovery rate-corrected &lt; 0.05) was discerned through Ingenuity Pathway Analysis. Empagliflozin significantly affected levels of 43 proteins, 6 related to cardiomyocyte function (fatty acid-binding protein 3 and 4 [FABPA], neurotrophic receptor tyrosine kinase, renin, thrombospondin 4, and leptin receptor), 5 to iron handling (ferritin heavy chain 1, transferrin receptor protein 1, neogenin, growth differentiation factor 2 [GDF2], and β2-microglobulin), and 1 to sphingosine/ceramide metabolism (neutral ceramidase), a known pathway of cardiovascular disease. Among the protein changes achieving the strongest statistical significance, insulin-like binding factor protein-1 (IGFBP-1), transgelin-2, FABPA, GDF15, and sulphydryl oxidase 2 precursor were increased, while ferritin, thrombospondin 3, and Rearranged during Transfection (RET) were decreased by empagliflozin administration. SGLT2 inhibition is associated, directly or indirectly, with multiple biological effects, including changes in markers of cardiomyocyte contraction/relaxation, iron handling, and other metabolic and renal targets. The most significant differences were detected in protein species (GDF15, ferritin, IGFBP-1, and FABP) potentially related to the clinical and metabolic changes that were actually measured in the same patients. These novel results may inform further studies using targeted proteomics and a prospective design.</description><identifier>ISSN: 0149-5992</identifier><identifier>EISSN: 1935-5548</identifier><identifier>DOI: 10.2337/dc20-0456</identifier><identifier>PMID: 32527800</identifier><language>eng</language><publisher>United States: American Diabetes Association</publisher><subject>Aged ; Antidiabetics ; Aptamers ; Benzhydryl Compounds - pharmacology ; Biological effects ; Biomarkers - analysis ; Biomarkers - blood ; Blood Proteins - drug effects ; Blood Proteins - metabolism ; Cardiomyocytes ; Cardiovascular diseases ; Ceramidase ; Ceramide ; Contraction ; Fatty acid-binding protein ; Fatty acids ; Female ; Ferritin ; Glucose ; Glucose - metabolism ; Glucose tolerance ; Glucosides - pharmacology ; Humans ; Hypoglycemic Agents - pharmacology ; Insulin ; Insulin-like growth factor-binding protein 1 ; Iron ; Kinases ; Male ; Metabolism ; Middle Aged ; Plasma proteins ; Prospective Studies ; Protein-tyrosine kinase receptors ; Proteins ; Proteome - analysis ; Proteome - drug effects ; Proteome - metabolism ; Proteomics ; Proteomics - methods ; Receptors ; Renin ; Research design ; Ret protein ; Signal Transduction - drug effects ; Sodium ; Sodium-glucose cotransporter ; Sodium-Glucose Transporter 2 Inhibitors - pharmacology ; Statistical methods ; Thrombospondin ; Transfection ; Transferrin ; Transferrins ; Tyrosine ; β2 Microglobulin</subject><ispartof>Diabetes care, 2020-09, Vol.43 (9), p.2183-2189</ispartof><rights>2020 by the American Diabetes Association.</rights><rights>Copyright American Diabetes Association Sep 1, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-ca36459053e2ec9260429778da5cf83da1019c9c1f9ac64aec6d9e7cb5fa75e73</citedby><cites>FETCH-LOGICAL-c414t-ca36459053e2ec9260429778da5cf83da1019c9c1f9ac64aec6d9e7cb5fa75e73</cites><orcidid>0000-0002-1384-1584 ; 0000-0002-1604-2593</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32527800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferrannini, Ele</creatorcontrib><creatorcontrib>Murthy, Ashwin C</creatorcontrib><creatorcontrib>Lee, Yong-Ho</creatorcontrib><creatorcontrib>Muscelli, Elza</creatorcontrib><creatorcontrib>Weiss, Sophie</creatorcontrib><creatorcontrib>Ostroff, Rachel M</creatorcontrib><creatorcontrib>Sattar, Naveed</creatorcontrib><creatorcontrib>Williams, Stephen A</creatorcontrib><creatorcontrib>Ganz, Peter</creatorcontrib><title>Mechanisms of Sodium-Glucose Cotransporter 2 Inhibition: Insights From Large-Scale Proteomics</title><title>Diabetes care</title><addtitle>Diabetes Care</addtitle><description>To assess the effects of empagliflozin, a selective sodium-glucose cotransporter 2 (SGLT2) inhibitor, on broad biological systems through proteomics. Aptamer-based proteomics was used to quantify 3,713 proteins in 144 paired plasma samples obtained from 72 participants across the spectrum of glucose tolerance before and after 4 weeks of empagliflozin 25 mg/day. The biology of the plasma proteins significantly changed by empagliflozin (at false discovery rate-corrected &lt; 0.05) was discerned through Ingenuity Pathway Analysis. Empagliflozin significantly affected levels of 43 proteins, 6 related to cardiomyocyte function (fatty acid-binding protein 3 and 4 [FABPA], neurotrophic receptor tyrosine kinase, renin, thrombospondin 4, and leptin receptor), 5 to iron handling (ferritin heavy chain 1, transferrin receptor protein 1, neogenin, growth differentiation factor 2 [GDF2], and β2-microglobulin), and 1 to sphingosine/ceramide metabolism (neutral ceramidase), a known pathway of cardiovascular disease. Among the protein changes achieving the strongest statistical significance, insulin-like binding factor protein-1 (IGFBP-1), transgelin-2, FABPA, GDF15, and sulphydryl oxidase 2 precursor were increased, while ferritin, thrombospondin 3, and Rearranged during Transfection (RET) were decreased by empagliflozin administration. SGLT2 inhibition is associated, directly or indirectly, with multiple biological effects, including changes in markers of cardiomyocyte contraction/relaxation, iron handling, and other metabolic and renal targets. The most significant differences were detected in protein species (GDF15, ferritin, IGFBP-1, and FABP) potentially related to the clinical and metabolic changes that were actually measured in the same patients. These novel results may inform further studies using targeted proteomics and a prospective design.</description><subject>Aged</subject><subject>Antidiabetics</subject><subject>Aptamers</subject><subject>Benzhydryl Compounds - pharmacology</subject><subject>Biological effects</subject><subject>Biomarkers - analysis</subject><subject>Biomarkers - blood</subject><subject>Blood Proteins - drug effects</subject><subject>Blood Proteins - metabolism</subject><subject>Cardiomyocytes</subject><subject>Cardiovascular diseases</subject><subject>Ceramidase</subject><subject>Ceramide</subject><subject>Contraction</subject><subject>Fatty acid-binding protein</subject><subject>Fatty acids</subject><subject>Female</subject><subject>Ferritin</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Glucose tolerance</subject><subject>Glucosides - pharmacology</subject><subject>Humans</subject><subject>Hypoglycemic Agents - pharmacology</subject><subject>Insulin</subject><subject>Insulin-like growth factor-binding protein 1</subject><subject>Iron</subject><subject>Kinases</subject><subject>Male</subject><subject>Metabolism</subject><subject>Middle Aged</subject><subject>Plasma proteins</subject><subject>Prospective Studies</subject><subject>Protein-tyrosine kinase receptors</subject><subject>Proteins</subject><subject>Proteome - analysis</subject><subject>Proteome - drug effects</subject><subject>Proteome - metabolism</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>Receptors</subject><subject>Renin</subject><subject>Research design</subject><subject>Ret protein</subject><subject>Signal Transduction - drug effects</subject><subject>Sodium</subject><subject>Sodium-glucose cotransporter</subject><subject>Sodium-Glucose Transporter 2 Inhibitors - pharmacology</subject><subject>Statistical methods</subject><subject>Thrombospondin</subject><subject>Transfection</subject><subject>Transferrin</subject><subject>Transferrins</subject><subject>Tyrosine</subject><subject>β2 Microglobulin</subject><issn>0149-5992</issn><issn>1935-5548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0M9LwzAUwPEgipvTg_-AFLzoIZqfTeNNhpuDicL0KCVLX7eMtplJe_C_t2PTg6f3Dh8ejy9Cl5TcMc7VfWEZwUTI9AgNqeYSSymyYzQkVGgstWYDdBbjhhAiRJadogFnkqmMkCH6fAG7No2LdUx8mSx84boaT6vO-gjJ2LfBNHHrQwshYcmsWbula51vHvo9utW6jckk-DqZm7ACvLCmguQt-BZ87Ww8RyelqSJcHOYIfUye3sfPeP46nY0f59gKKlpsDU-F1ERyYGA1S4lgWqmsMNKWGS8MJVRbbWmpjU2FAZsWGpRdytIoCYqP0M3-7jb4rw5im9cuWqgq04DvYs4EZVoLlfGeXv-jG9-Fpv-uV0Kkimspe3W7Vzb4GAOU-Ta42oTvnJJ81zzfNc93zXt7dbjYLWso_uRvZP4DpXR7kQ</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Ferrannini, Ele</creator><creator>Murthy, Ashwin C</creator><creator>Lee, Yong-Ho</creator><creator>Muscelli, Elza</creator><creator>Weiss, Sophie</creator><creator>Ostroff, Rachel M</creator><creator>Sattar, Naveed</creator><creator>Williams, Stephen A</creator><creator>Ganz, Peter</creator><general>American Diabetes Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1384-1584</orcidid><orcidid>https://orcid.org/0000-0002-1604-2593</orcidid></search><sort><creationdate>20200901</creationdate><title>Mechanisms of Sodium-Glucose Cotransporter 2 Inhibition: Insights From Large-Scale Proteomics</title><author>Ferrannini, Ele ; Murthy, Ashwin C ; Lee, Yong-Ho ; Muscelli, Elza ; Weiss, Sophie ; Ostroff, Rachel M ; Sattar, Naveed ; Williams, Stephen A ; Ganz, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-ca36459053e2ec9260429778da5cf83da1019c9c1f9ac64aec6d9e7cb5fa75e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aged</topic><topic>Antidiabetics</topic><topic>Aptamers</topic><topic>Benzhydryl Compounds - pharmacology</topic><topic>Biological effects</topic><topic>Biomarkers - analysis</topic><topic>Biomarkers - blood</topic><topic>Blood Proteins - drug effects</topic><topic>Blood Proteins - metabolism</topic><topic>Cardiomyocytes</topic><topic>Cardiovascular diseases</topic><topic>Ceramidase</topic><topic>Ceramide</topic><topic>Contraction</topic><topic>Fatty acid-binding protein</topic><topic>Fatty acids</topic><topic>Female</topic><topic>Ferritin</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Glucose tolerance</topic><topic>Glucosides - pharmacology</topic><topic>Humans</topic><topic>Hypoglycemic Agents - pharmacology</topic><topic>Insulin</topic><topic>Insulin-like growth factor-binding protein 1</topic><topic>Iron</topic><topic>Kinases</topic><topic>Male</topic><topic>Metabolism</topic><topic>Middle Aged</topic><topic>Plasma proteins</topic><topic>Prospective Studies</topic><topic>Protein-tyrosine kinase receptors</topic><topic>Proteins</topic><topic>Proteome - analysis</topic><topic>Proteome - drug effects</topic><topic>Proteome - metabolism</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>Receptors</topic><topic>Renin</topic><topic>Research design</topic><topic>Ret protein</topic><topic>Signal Transduction - drug effects</topic><topic>Sodium</topic><topic>Sodium-glucose cotransporter</topic><topic>Sodium-Glucose Transporter 2 Inhibitors - pharmacology</topic><topic>Statistical methods</topic><topic>Thrombospondin</topic><topic>Transfection</topic><topic>Transferrin</topic><topic>Transferrins</topic><topic>Tyrosine</topic><topic>β2 Microglobulin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferrannini, Ele</creatorcontrib><creatorcontrib>Murthy, Ashwin C</creatorcontrib><creatorcontrib>Lee, Yong-Ho</creatorcontrib><creatorcontrib>Muscelli, Elza</creatorcontrib><creatorcontrib>Weiss, Sophie</creatorcontrib><creatorcontrib>Ostroff, Rachel M</creatorcontrib><creatorcontrib>Sattar, Naveed</creatorcontrib><creatorcontrib>Williams, Stephen A</creatorcontrib><creatorcontrib>Ganz, Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Diabetes care</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferrannini, Ele</au><au>Murthy, Ashwin C</au><au>Lee, Yong-Ho</au><au>Muscelli, Elza</au><au>Weiss, Sophie</au><au>Ostroff, Rachel M</au><au>Sattar, Naveed</au><au>Williams, Stephen A</au><au>Ganz, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms of Sodium-Glucose Cotransporter 2 Inhibition: Insights From Large-Scale Proteomics</atitle><jtitle>Diabetes care</jtitle><addtitle>Diabetes Care</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>43</volume><issue>9</issue><spage>2183</spage><epage>2189</epage><pages>2183-2189</pages><issn>0149-5992</issn><eissn>1935-5548</eissn><abstract>To assess the effects of empagliflozin, a selective sodium-glucose cotransporter 2 (SGLT2) inhibitor, on broad biological systems through proteomics. Aptamer-based proteomics was used to quantify 3,713 proteins in 144 paired plasma samples obtained from 72 participants across the spectrum of glucose tolerance before and after 4 weeks of empagliflozin 25 mg/day. The biology of the plasma proteins significantly changed by empagliflozin (at false discovery rate-corrected &lt; 0.05) was discerned through Ingenuity Pathway Analysis. Empagliflozin significantly affected levels of 43 proteins, 6 related to cardiomyocyte function (fatty acid-binding protein 3 and 4 [FABPA], neurotrophic receptor tyrosine kinase, renin, thrombospondin 4, and leptin receptor), 5 to iron handling (ferritin heavy chain 1, transferrin receptor protein 1, neogenin, growth differentiation factor 2 [GDF2], and β2-microglobulin), and 1 to sphingosine/ceramide metabolism (neutral ceramidase), a known pathway of cardiovascular disease. Among the protein changes achieving the strongest statistical significance, insulin-like binding factor protein-1 (IGFBP-1), transgelin-2, FABPA, GDF15, and sulphydryl oxidase 2 precursor were increased, while ferritin, thrombospondin 3, and Rearranged during Transfection (RET) were decreased by empagliflozin administration. SGLT2 inhibition is associated, directly or indirectly, with multiple biological effects, including changes in markers of cardiomyocyte contraction/relaxation, iron handling, and other metabolic and renal targets. The most significant differences were detected in protein species (GDF15, ferritin, IGFBP-1, and FABP) potentially related to the clinical and metabolic changes that were actually measured in the same patients. These novel results may inform further studies using targeted proteomics and a prospective design.</abstract><cop>United States</cop><pub>American Diabetes Association</pub><pmid>32527800</pmid><doi>10.2337/dc20-0456</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1384-1584</orcidid><orcidid>https://orcid.org/0000-0002-1604-2593</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0149-5992
ispartof Diabetes care, 2020-09, Vol.43 (9), p.2183-2189
issn 0149-5992
1935-5548
language eng
recordid cdi_proquest_miscellaneous_2412994783
source MEDLINE; EZB-FREE-00999 freely available EZB journals
subjects Aged
Antidiabetics
Aptamers
Benzhydryl Compounds - pharmacology
Biological effects
Biomarkers - analysis
Biomarkers - blood
Blood Proteins - drug effects
Blood Proteins - metabolism
Cardiomyocytes
Cardiovascular diseases
Ceramidase
Ceramide
Contraction
Fatty acid-binding protein
Fatty acids
Female
Ferritin
Glucose
Glucose - metabolism
Glucose tolerance
Glucosides - pharmacology
Humans
Hypoglycemic Agents - pharmacology
Insulin
Insulin-like growth factor-binding protein 1
Iron
Kinases
Male
Metabolism
Middle Aged
Plasma proteins
Prospective Studies
Protein-tyrosine kinase receptors
Proteins
Proteome - analysis
Proteome - drug effects
Proteome - metabolism
Proteomics
Proteomics - methods
Receptors
Renin
Research design
Ret protein
Signal Transduction - drug effects
Sodium
Sodium-glucose cotransporter
Sodium-Glucose Transporter 2 Inhibitors - pharmacology
Statistical methods
Thrombospondin
Transfection
Transferrin
Transferrins
Tyrosine
β2 Microglobulin
title Mechanisms of Sodium-Glucose Cotransporter 2 Inhibition: Insights From Large-Scale Proteomics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A48%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20of%20Sodium-Glucose%20Cotransporter%202%20Inhibition:%20Insights%20From%20Large-Scale%20Proteomics&rft.jtitle=Diabetes%20care&rft.au=Ferrannini,%20Ele&rft.date=2020-09-01&rft.volume=43&rft.issue=9&rft.spage=2183&rft.epage=2189&rft.pages=2183-2189&rft.issn=0149-5992&rft.eissn=1935-5548&rft_id=info:doi/10.2337/dc20-0456&rft_dat=%3Cproquest_cross%3E2412994783%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444673955&rft_id=info:pmid/32527800&rfr_iscdi=true