Analysis and correction of off‐resonance artifacts in echo‐planar cardiac diffusion tensor imaging

Purpose Cardiac diffusion tensor imaging using EPI readout is prone to image distortions in the presence of field inhomogeneities. In this work, a framework to analyze and correct image distortions in cardiac diffusion tensor imaging is presented. Methods A multi‐coil reconstruction framework was im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2020-11, Vol.84 (5), p.2561-2576
Hauptverfasser: Gorkum, Robbert J. H., Deuster, Constantin, Guenthner, Christian, Stoeck, Christian T., Kozerke, Sebastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2576
container_issue 5
container_start_page 2561
container_title Magnetic resonance in medicine
container_volume 84
creator Gorkum, Robbert J. H.
Deuster, Constantin
Guenthner, Christian
Stoeck, Christian T.
Kozerke, Sebastian
description Purpose Cardiac diffusion tensor imaging using EPI readout is prone to image distortions in the presence of field inhomogeneities. In this work, a framework to analyze and correct image distortions in cardiac diffusion tensor imaging is presented. Methods A multi‐coil reconstruction framework was implemented to enable field map‐based off‐resonance correction. Numerical simulations were used to examine reconstruction performance for EPI phase‐encode directions blip up‐down and down‐up for different degrees of off‐resonance gradients and varying field map resolution. The impact of coil encoding was analyzed using the g‐factor and normalized RMSE. Finally, the proposed method was tested on free‐breathing in vivo cardiac diffusion tensor imaging data acquired in healthy subjects at 3 Tesla. Results Depending on the local field map gradient strength and polarity and the selected phase‐encode direction, field inhomogeneities lead to either local spatial compression or stretching with standard image reconstruction. Although spatial compression results in loss of image resolution upon field map‐based reconstruction, spatial stretching can be recovered once multiple receive coils are utilized. Multi‐coil reconstruction was found to reduce the normalized RMSE from 34.3% to 8.1% for image compression, and 33.6% to 1.8% for image stretching, with resulting average g‐factors 14.7 ± 2.9 and 1.2 ± 0.1, respectively. In vivo, multi‐coil field map‐based reconstruction yielded improved alignment of angle maps with anatomical cine data. Conclusion Multi‐coil, field map‐based image reconstruction for echo‐planar cardiac diffusion tensor imaging allows accurate image reconstruction provided that the phase‐encode direction and polarity is chosen to principally align with the direction and polarity of the prominent gradients of field inhomogeneities.
doi_str_mv 10.1002/mrm.28318
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2412990142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429347047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3538-999e1c0137d1bb8549be28b473e8239c7a45d05aedef64cbe8de7de1d866875c3</originalsourceid><addsrcrecordid>eNp1kM9OGzEQh60KBCHl0BeoLHEphyX-t1n7iKK2VAIhofa88trj1GjXTu1dodx4hD4jT4LTUA5ISJbm4G9-M_Mh9ImSC0oIWwxpuGCSU_kBzWjNWMVqJQ7QjDSCVJwqcYxOcr4nhCjViCN0zFnNCVmyGXKXQffb7DPWwWITUwIz-hhwdOW5p8e_CXIMOhjAOo3eaTNm7AMG8zuW302vg07Y6GS9Nth656a86x8h5JiwH_Tah_VHdOh0n-H0pc7Rr29ff66uquvb7z9Wl9eV4TWXlVIKqCGUN5Z2nayF6oDJTjQcJOPKNFrUltQaLLilMB1IC40FauVyKZva8Dn6ss_dpPhngjy2g88G-rIlxCm3TFCmFKGCFfTsDXofp1Rs7CimuGhImTtH53vKpJhzAtduUrkpbVtK2p38tshv_8kv7OeXxKkbwL6S_20XYLEHHnwP2_eT2pu7m33kM2IrkMk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429347047</pqid></control><display><type>article</type><title>Analysis and correction of off‐resonance artifacts in echo‐planar cardiac diffusion tensor imaging</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gorkum, Robbert J. H. ; Deuster, Constantin ; Guenthner, Christian ; Stoeck, Christian T. ; Kozerke, Sebastian</creator><creatorcontrib>Gorkum, Robbert J. H. ; Deuster, Constantin ; Guenthner, Christian ; Stoeck, Christian T. ; Kozerke, Sebastian</creatorcontrib><description>Purpose Cardiac diffusion tensor imaging using EPI readout is prone to image distortions in the presence of field inhomogeneities. In this work, a framework to analyze and correct image distortions in cardiac diffusion tensor imaging is presented. Methods A multi‐coil reconstruction framework was implemented to enable field map‐based off‐resonance correction. Numerical simulations were used to examine reconstruction performance for EPI phase‐encode directions blip up‐down and down‐up for different degrees of off‐resonance gradients and varying field map resolution. The impact of coil encoding was analyzed using the g‐factor and normalized RMSE. Finally, the proposed method was tested on free‐breathing in vivo cardiac diffusion tensor imaging data acquired in healthy subjects at 3 Tesla. Results Depending on the local field map gradient strength and polarity and the selected phase‐encode direction, field inhomogeneities lead to either local spatial compression or stretching with standard image reconstruction. Although spatial compression results in loss of image resolution upon field map‐based reconstruction, spatial stretching can be recovered once multiple receive coils are utilized. Multi‐coil reconstruction was found to reduce the normalized RMSE from 34.3% to 8.1% for image compression, and 33.6% to 1.8% for image stretching, with resulting average g‐factors 14.7 ± 2.9 and 1.2 ± 0.1, respectively. In vivo, multi‐coil field map‐based reconstruction yielded improved alignment of angle maps with anatomical cine data. Conclusion Multi‐coil, field map‐based image reconstruction for echo‐planar cardiac diffusion tensor imaging allows accurate image reconstruction provided that the phase‐encode direction and polarity is chosen to principally align with the direction and polarity of the prominent gradients of field inhomogeneities.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.28318</identifier><identifier>PMID: 32530062</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Brain ; cardiac diffusion tensor imaging ; coil encoding ; Compression ; Computer simulation ; Data acquisition ; Diffusion ; Diffusion Magnetic Resonance Imaging ; Diffusion Tensor Imaging ; Echo-Planar Imaging ; field inhomogeneity ; Heart ; Humans ; Image acquisition ; Image compression ; image distortion correction ; Image processing ; Image Processing, Computer-Assisted ; Image reconstruction ; Image resolution ; In vivo methods and tests ; Inhomogeneity ; Magnetic resonance imaging ; Mathematical analysis ; off‐resonance ; parallel imaging ; Polarity ; Resonance ; Stretching ; Tensors</subject><ispartof>Magnetic resonance in medicine, 2020-11, Vol.84 (5), p.2561-2576</ispartof><rights>2020 International Society for Magnetic Resonance in Medicine</rights><rights>2020 International Society for Magnetic Resonance in Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3538-999e1c0137d1bb8549be28b473e8239c7a45d05aedef64cbe8de7de1d866875c3</citedby><cites>FETCH-LOGICAL-c3538-999e1c0137d1bb8549be28b473e8239c7a45d05aedef64cbe8de7de1d866875c3</cites><orcidid>0000-0003-1072-0477 ; 0000-0003-3725-8884 ; 0000-0001-8707-7016 ; 0000-0001-8670-0929</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.28318$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.28318$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27902,27903,45552,45553</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32530062$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gorkum, Robbert J. H.</creatorcontrib><creatorcontrib>Deuster, Constantin</creatorcontrib><creatorcontrib>Guenthner, Christian</creatorcontrib><creatorcontrib>Stoeck, Christian T.</creatorcontrib><creatorcontrib>Kozerke, Sebastian</creatorcontrib><title>Analysis and correction of off‐resonance artifacts in echo‐planar cardiac diffusion tensor imaging</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose Cardiac diffusion tensor imaging using EPI readout is prone to image distortions in the presence of field inhomogeneities. In this work, a framework to analyze and correct image distortions in cardiac diffusion tensor imaging is presented. Methods A multi‐coil reconstruction framework was implemented to enable field map‐based off‐resonance correction. Numerical simulations were used to examine reconstruction performance for EPI phase‐encode directions blip up‐down and down‐up for different degrees of off‐resonance gradients and varying field map resolution. The impact of coil encoding was analyzed using the g‐factor and normalized RMSE. Finally, the proposed method was tested on free‐breathing in vivo cardiac diffusion tensor imaging data acquired in healthy subjects at 3 Tesla. Results Depending on the local field map gradient strength and polarity and the selected phase‐encode direction, field inhomogeneities lead to either local spatial compression or stretching with standard image reconstruction. Although spatial compression results in loss of image resolution upon field map‐based reconstruction, spatial stretching can be recovered once multiple receive coils are utilized. Multi‐coil reconstruction was found to reduce the normalized RMSE from 34.3% to 8.1% for image compression, and 33.6% to 1.8% for image stretching, with resulting average g‐factors 14.7 ± 2.9 and 1.2 ± 0.1, respectively. In vivo, multi‐coil field map‐based reconstruction yielded improved alignment of angle maps with anatomical cine data. Conclusion Multi‐coil, field map‐based image reconstruction for echo‐planar cardiac diffusion tensor imaging allows accurate image reconstruction provided that the phase‐encode direction and polarity is chosen to principally align with the direction and polarity of the prominent gradients of field inhomogeneities.</description><subject>Algorithms</subject><subject>Brain</subject><subject>cardiac diffusion tensor imaging</subject><subject>coil encoding</subject><subject>Compression</subject><subject>Computer simulation</subject><subject>Data acquisition</subject><subject>Diffusion</subject><subject>Diffusion Magnetic Resonance Imaging</subject><subject>Diffusion Tensor Imaging</subject><subject>Echo-Planar Imaging</subject><subject>field inhomogeneity</subject><subject>Heart</subject><subject>Humans</subject><subject>Image acquisition</subject><subject>Image compression</subject><subject>image distortion correction</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>In vivo methods and tests</subject><subject>Inhomogeneity</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical analysis</subject><subject>off‐resonance</subject><subject>parallel imaging</subject><subject>Polarity</subject><subject>Resonance</subject><subject>Stretching</subject><subject>Tensors</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM9OGzEQh60KBCHl0BeoLHEphyX-t1n7iKK2VAIhofa88trj1GjXTu1dodx4hD4jT4LTUA5ISJbm4G9-M_Mh9ImSC0oIWwxpuGCSU_kBzWjNWMVqJQ7QjDSCVJwqcYxOcr4nhCjViCN0zFnNCVmyGXKXQffb7DPWwWITUwIz-hhwdOW5p8e_CXIMOhjAOo3eaTNm7AMG8zuW302vg07Y6GS9Nth656a86x8h5JiwH_Tah_VHdOh0n-H0pc7Rr29ff66uquvb7z9Wl9eV4TWXlVIKqCGUN5Z2nayF6oDJTjQcJOPKNFrUltQaLLilMB1IC40FauVyKZva8Dn6ss_dpPhngjy2g88G-rIlxCm3TFCmFKGCFfTsDXofp1Rs7CimuGhImTtH53vKpJhzAtduUrkpbVtK2p38tshv_8kv7OeXxKkbwL6S_20XYLEHHnwP2_eT2pu7m33kM2IrkMk</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Gorkum, Robbert J. H.</creator><creator>Deuster, Constantin</creator><creator>Guenthner, Christian</creator><creator>Stoeck, Christian T.</creator><creator>Kozerke, Sebastian</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1072-0477</orcidid><orcidid>https://orcid.org/0000-0003-3725-8884</orcidid><orcidid>https://orcid.org/0000-0001-8707-7016</orcidid><orcidid>https://orcid.org/0000-0001-8670-0929</orcidid></search><sort><creationdate>202011</creationdate><title>Analysis and correction of off‐resonance artifacts in echo‐planar cardiac diffusion tensor imaging</title><author>Gorkum, Robbert J. H. ; Deuster, Constantin ; Guenthner, Christian ; Stoeck, Christian T. ; Kozerke, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3538-999e1c0137d1bb8549be28b473e8239c7a45d05aedef64cbe8de7de1d866875c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Brain</topic><topic>cardiac diffusion tensor imaging</topic><topic>coil encoding</topic><topic>Compression</topic><topic>Computer simulation</topic><topic>Data acquisition</topic><topic>Diffusion</topic><topic>Diffusion Magnetic Resonance Imaging</topic><topic>Diffusion Tensor Imaging</topic><topic>Echo-Planar Imaging</topic><topic>field inhomogeneity</topic><topic>Heart</topic><topic>Humans</topic><topic>Image acquisition</topic><topic>Image compression</topic><topic>image distortion correction</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>In vivo methods and tests</topic><topic>Inhomogeneity</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical analysis</topic><topic>off‐resonance</topic><topic>parallel imaging</topic><topic>Polarity</topic><topic>Resonance</topic><topic>Stretching</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorkum, Robbert J. H.</creatorcontrib><creatorcontrib>Deuster, Constantin</creatorcontrib><creatorcontrib>Guenthner, Christian</creatorcontrib><creatorcontrib>Stoeck, Christian T.</creatorcontrib><creatorcontrib>Kozerke, Sebastian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorkum, Robbert J. H.</au><au>Deuster, Constantin</au><au>Guenthner, Christian</au><au>Stoeck, Christian T.</au><au>Kozerke, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis and correction of off‐resonance artifacts in echo‐planar cardiac diffusion tensor imaging</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2020-11</date><risdate>2020</risdate><volume>84</volume><issue>5</issue><spage>2561</spage><epage>2576</epage><pages>2561-2576</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose Cardiac diffusion tensor imaging using EPI readout is prone to image distortions in the presence of field inhomogeneities. In this work, a framework to analyze and correct image distortions in cardiac diffusion tensor imaging is presented. Methods A multi‐coil reconstruction framework was implemented to enable field map‐based off‐resonance correction. Numerical simulations were used to examine reconstruction performance for EPI phase‐encode directions blip up‐down and down‐up for different degrees of off‐resonance gradients and varying field map resolution. The impact of coil encoding was analyzed using the g‐factor and normalized RMSE. Finally, the proposed method was tested on free‐breathing in vivo cardiac diffusion tensor imaging data acquired in healthy subjects at 3 Tesla. Results Depending on the local field map gradient strength and polarity and the selected phase‐encode direction, field inhomogeneities lead to either local spatial compression or stretching with standard image reconstruction. Although spatial compression results in loss of image resolution upon field map‐based reconstruction, spatial stretching can be recovered once multiple receive coils are utilized. Multi‐coil reconstruction was found to reduce the normalized RMSE from 34.3% to 8.1% for image compression, and 33.6% to 1.8% for image stretching, with resulting average g‐factors 14.7 ± 2.9 and 1.2 ± 0.1, respectively. In vivo, multi‐coil field map‐based reconstruction yielded improved alignment of angle maps with anatomical cine data. Conclusion Multi‐coil, field map‐based image reconstruction for echo‐planar cardiac diffusion tensor imaging allows accurate image reconstruction provided that the phase‐encode direction and polarity is chosen to principally align with the direction and polarity of the prominent gradients of field inhomogeneities.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32530062</pmid><doi>10.1002/mrm.28318</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1072-0477</orcidid><orcidid>https://orcid.org/0000-0003-3725-8884</orcidid><orcidid>https://orcid.org/0000-0001-8707-7016</orcidid><orcidid>https://orcid.org/0000-0001-8670-0929</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2020-11, Vol.84 (5), p.2561-2576
issn 0740-3194
1522-2594
language eng
recordid cdi_proquest_miscellaneous_2412990142
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Brain
cardiac diffusion tensor imaging
coil encoding
Compression
Computer simulation
Data acquisition
Diffusion
Diffusion Magnetic Resonance Imaging
Diffusion Tensor Imaging
Echo-Planar Imaging
field inhomogeneity
Heart
Humans
Image acquisition
Image compression
image distortion correction
Image processing
Image Processing, Computer-Assisted
Image reconstruction
Image resolution
In vivo methods and tests
Inhomogeneity
Magnetic resonance imaging
Mathematical analysis
off‐resonance
parallel imaging
Polarity
Resonance
Stretching
Tensors
title Analysis and correction of off‐resonance artifacts in echo‐planar cardiac diffusion tensor imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A15%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20and%20correction%20of%20off%E2%80%90resonance%20artifacts%20in%20echo%E2%80%90planar%20cardiac%20diffusion%20tensor%20imaging&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Gorkum,%20Robbert%20J.%20H.&rft.date=2020-11&rft.volume=84&rft.issue=5&rft.spage=2561&rft.epage=2576&rft.pages=2561-2576&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.28318&rft_dat=%3Cproquest_cross%3E2429347047%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429347047&rft_id=info:pmid/32530062&rfr_iscdi=true