Dysregulation of BRD4 Function Underlies the Functional Abnormalities of MeCP2 Mutant Neurons

Rett syndrome (RTT), mainly caused by mutations in methyl-CpG binding protein 2 (MeCP2), is one of the most prevalent intellectual disorders without effective therapies. Here, we used 2D and 3D human brain cultures to investigate MeCP2 function. We found that MeCP2 mutations cause severe abnormaliti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2020-07, Vol.79 (1), p.84-98.e9
Hauptverfasser: Xiang, Yangfei, Tanaka, Yoshiaki, Patterson, Benjamin, Hwang, Sung-Min, Hysolli, Eriona, Cakir, Bilal, Kim, Kun-Yong, Wang, Wanshan, Kang, Young-Jin, Clement, Ethan M., Zhong, Mei, Lee, Sang-Hun, Cho, Yee Sook, Patra, Prabir, Sullivan, Gareth J., Weissman, Sherman M., Park, In-Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 98.e9
container_issue 1
container_start_page 84
container_title Molecular cell
container_volume 79
creator Xiang, Yangfei
Tanaka, Yoshiaki
Patterson, Benjamin
Hwang, Sung-Min
Hysolli, Eriona
Cakir, Bilal
Kim, Kun-Yong
Wang, Wanshan
Kang, Young-Jin
Clement, Ethan M.
Zhong, Mei
Lee, Sang-Hun
Cho, Yee Sook
Patra, Prabir
Sullivan, Gareth J.
Weissman, Sherman M.
Park, In-Hyun
description Rett syndrome (RTT), mainly caused by mutations in methyl-CpG binding protein 2 (MeCP2), is one of the most prevalent intellectual disorders without effective therapies. Here, we used 2D and 3D human brain cultures to investigate MeCP2 function. We found that MeCP2 mutations cause severe abnormalities in human interneurons (INs). Surprisingly, treatment with a BET inhibitor, JQ1, rescued the molecular and functional phenotypes of MeCP2 mutant INs. We uncovered that abnormal increases in chromatin binding of BRD4 and enhancer-promoter interactions underlie the abnormal transcription in MeCP2 mutant INs, which were recovered to normal levels by JQ1. We revealed cell-type-specific transcriptome impairment in MeCP2 mutant region-specific human brain organoids that were rescued by JQ1. Finally, JQ1 ameliorated RTT-like phenotypes in mice. These data demonstrate that BRD4 dysregulation is a critical driver for RTT etiology and suggest that targeting BRD4 could be a potential therapeutic opportunity for RTT. [Display omitted] •MeCP2 mutation severely impairs human cortical interneurons•BRD4 dysregulation contributes to abnormal transcriptome in RTT interneurons•MeCP2 mutation causes cell-type-specific impairments in human brain organoids•BET inhibition rescues RTT-like phenotypes Xiang et al. report that dysregulation of BRD4 function is a critical driver for the abnormal transcriptome in human RTT cells and that targeting BRD4 rescues molecular and functional deficiencies of human RTT cells and ameliorates RTT progression in mice.
doi_str_mv 10.1016/j.molcel.2020.05.016
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2412987960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276520303178</els_id><sourcerecordid>2412987960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-8277335fceeece0df8dafd1789e0db05ba69483a0cf5d7c9751dc61e737ea8eb3</originalsourceid><addsrcrecordid>eNp9UV1PFDEUbYxEEP0HRufRlx3bzvRjXkxwETABNUYeTdNp70A3My20HRL-vV13WeGFp7bn3ntuzzkIvSO4JpjwT6t6CqOBsaaY4hqzuoAv0AHBnVi0hLcvt3cqONtHr1NaYUxaJrtXaL-hjHLCmwP05_g-RbiaR51d8FUYqi-_jtvqZPbmH3DpLcTRQaryNexgPVZHvQ9x0qPL62KZu4DlT1pdzFn7XH2HOQaf3qC9QY8J3m7PQ3R58vX38mxx_uP02_LofGEYa_JCUiGahg0GAAxgO0irB0uE7Mqjx6zXvGtlo7EZmBWmE4xYwwmIRoCW0DeH6POG92buJ7AGfI56VDfRTTreq6Cdelrx7lpdhTtVGBjpRCH4sCEw0aXsvCritCJYMqqEbAUvHR-3K2K4nSFlNblU7B-1hzAnRVtCOyk6jktr-0AWUnF32H2EYLXOTq3UJju1zk5hpgpYxt4_FrEbegjrv0ooVt45iCoZB96AdRFMVja45zf8BcS0rX4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412987960</pqid></control><display><type>article</type><title>Dysregulation of BRD4 Function Underlies the Functional Abnormalities of MeCP2 Mutant Neurons</title><source>MEDLINE</source><source>NORA - Norwegian Open Research Archives</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Xiang, Yangfei ; Tanaka, Yoshiaki ; Patterson, Benjamin ; Hwang, Sung-Min ; Hysolli, Eriona ; Cakir, Bilal ; Kim, Kun-Yong ; Wang, Wanshan ; Kang, Young-Jin ; Clement, Ethan M. ; Zhong, Mei ; Lee, Sang-Hun ; Cho, Yee Sook ; Patra, Prabir ; Sullivan, Gareth J. ; Weissman, Sherman M. ; Park, In-Hyun</creator><creatorcontrib>Xiang, Yangfei ; Tanaka, Yoshiaki ; Patterson, Benjamin ; Hwang, Sung-Min ; Hysolli, Eriona ; Cakir, Bilal ; Kim, Kun-Yong ; Wang, Wanshan ; Kang, Young-Jin ; Clement, Ethan M. ; Zhong, Mei ; Lee, Sang-Hun ; Cho, Yee Sook ; Patra, Prabir ; Sullivan, Gareth J. ; Weissman, Sherman M. ; Park, In-Hyun</creatorcontrib><description>Rett syndrome (RTT), mainly caused by mutations in methyl-CpG binding protein 2 (MeCP2), is one of the most prevalent intellectual disorders without effective therapies. Here, we used 2D and 3D human brain cultures to investigate MeCP2 function. We found that MeCP2 mutations cause severe abnormalities in human interneurons (INs). Surprisingly, treatment with a BET inhibitor, JQ1, rescued the molecular and functional phenotypes of MeCP2 mutant INs. We uncovered that abnormal increases in chromatin binding of BRD4 and enhancer-promoter interactions underlie the abnormal transcription in MeCP2 mutant INs, which were recovered to normal levels by JQ1. We revealed cell-type-specific transcriptome impairment in MeCP2 mutant region-specific human brain organoids that were rescued by JQ1. Finally, JQ1 ameliorated RTT-like phenotypes in mice. These data demonstrate that BRD4 dysregulation is a critical driver for RTT etiology and suggest that targeting BRD4 could be a potential therapeutic opportunity for RTT. [Display omitted] •MeCP2 mutation severely impairs human cortical interneurons•BRD4 dysregulation contributes to abnormal transcriptome in RTT interneurons•MeCP2 mutation causes cell-type-specific impairments in human brain organoids•BET inhibition rescues RTT-like phenotypes Xiang et al. report that dysregulation of BRD4 function is a critical driver for the abnormal transcriptome in human RTT cells and that targeting BRD4 rescues molecular and functional deficiencies of human RTT cells and ameliorates RTT progression in mice.</description><identifier>ISSN: 1097-2765</identifier><identifier>ISSN: 1097-4164</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2020.05.016</identifier><identifier>PMID: 32526163</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Azepines - pharmacology ; Brain - drug effects ; Brain - metabolism ; Brain - pathology ; brain organoid ; BRD4 ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Female ; Human Embryonic Stem Cells - drug effects ; Human Embryonic Stem Cells - metabolism ; Human Embryonic Stem Cells - pathology ; Humans ; Induced Pluripotent Stem Cells - drug effects ; Induced Pluripotent Stem Cells - metabolism ; Induced Pluripotent Stem Cells - pathology ; interneuron ; Interneurons - drug effects ; Interneurons - metabolism ; Interneurons - pathology ; JQ1 ; Male ; MeCP2 ; Methyl-CpG-Binding Protein 2 - physiology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mutation ; Phenotype ; Rett syndrome ; Rett Syndrome - drug therapy ; Rett Syndrome - genetics ; Rett Syndrome - metabolism ; Rett Syndrome - pathology ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcriptome - drug effects ; Triazoles - pharmacology</subject><ispartof>Molecular cell, 2020-07, Vol.79 (1), p.84-98.e9</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-8277335fceeece0df8dafd1789e0db05ba69483a0cf5d7c9751dc61e737ea8eb3</citedby><cites>FETCH-LOGICAL-c553t-8277335fceeece0df8dafd1789e0db05ba69483a0cf5d7c9751dc61e737ea8eb3</cites><orcidid>0000-0001-7748-1293</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molcel.2020.05.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,26548,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32526163$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiang, Yangfei</creatorcontrib><creatorcontrib>Tanaka, Yoshiaki</creatorcontrib><creatorcontrib>Patterson, Benjamin</creatorcontrib><creatorcontrib>Hwang, Sung-Min</creatorcontrib><creatorcontrib>Hysolli, Eriona</creatorcontrib><creatorcontrib>Cakir, Bilal</creatorcontrib><creatorcontrib>Kim, Kun-Yong</creatorcontrib><creatorcontrib>Wang, Wanshan</creatorcontrib><creatorcontrib>Kang, Young-Jin</creatorcontrib><creatorcontrib>Clement, Ethan M.</creatorcontrib><creatorcontrib>Zhong, Mei</creatorcontrib><creatorcontrib>Lee, Sang-Hun</creatorcontrib><creatorcontrib>Cho, Yee Sook</creatorcontrib><creatorcontrib>Patra, Prabir</creatorcontrib><creatorcontrib>Sullivan, Gareth J.</creatorcontrib><creatorcontrib>Weissman, Sherman M.</creatorcontrib><creatorcontrib>Park, In-Hyun</creatorcontrib><title>Dysregulation of BRD4 Function Underlies the Functional Abnormalities of MeCP2 Mutant Neurons</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Rett syndrome (RTT), mainly caused by mutations in methyl-CpG binding protein 2 (MeCP2), is one of the most prevalent intellectual disorders without effective therapies. Here, we used 2D and 3D human brain cultures to investigate MeCP2 function. We found that MeCP2 mutations cause severe abnormalities in human interneurons (INs). Surprisingly, treatment with a BET inhibitor, JQ1, rescued the molecular and functional phenotypes of MeCP2 mutant INs. We uncovered that abnormal increases in chromatin binding of BRD4 and enhancer-promoter interactions underlie the abnormal transcription in MeCP2 mutant INs, which were recovered to normal levels by JQ1. We revealed cell-type-specific transcriptome impairment in MeCP2 mutant region-specific human brain organoids that were rescued by JQ1. Finally, JQ1 ameliorated RTT-like phenotypes in mice. These data demonstrate that BRD4 dysregulation is a critical driver for RTT etiology and suggest that targeting BRD4 could be a potential therapeutic opportunity for RTT. [Display omitted] •MeCP2 mutation severely impairs human cortical interneurons•BRD4 dysregulation contributes to abnormal transcriptome in RTT interneurons•MeCP2 mutation causes cell-type-specific impairments in human brain organoids•BET inhibition rescues RTT-like phenotypes Xiang et al. report that dysregulation of BRD4 function is a critical driver for the abnormal transcriptome in human RTT cells and that targeting BRD4 rescues molecular and functional deficiencies of human RTT cells and ameliorates RTT progression in mice.</description><subject>Animals</subject><subject>Azepines - pharmacology</subject><subject>Brain - drug effects</subject><subject>Brain - metabolism</subject><subject>Brain - pathology</subject><subject>brain organoid</subject><subject>BRD4</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Female</subject><subject>Human Embryonic Stem Cells - drug effects</subject><subject>Human Embryonic Stem Cells - metabolism</subject><subject>Human Embryonic Stem Cells - pathology</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells - drug effects</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>Induced Pluripotent Stem Cells - pathology</subject><subject>interneuron</subject><subject>Interneurons - drug effects</subject><subject>Interneurons - metabolism</subject><subject>Interneurons - pathology</subject><subject>JQ1</subject><subject>Male</subject><subject>MeCP2</subject><subject>Methyl-CpG-Binding Protein 2 - physiology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mutation</subject><subject>Phenotype</subject><subject>Rett syndrome</subject><subject>Rett Syndrome - drug therapy</subject><subject>Rett Syndrome - genetics</subject><subject>Rett Syndrome - metabolism</subject><subject>Rett Syndrome - pathology</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcriptome - drug effects</subject><subject>Triazoles - pharmacology</subject><issn>1097-2765</issn><issn>1097-4164</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>3HK</sourceid><recordid>eNp9UV1PFDEUbYxEEP0HRufRlx3bzvRjXkxwETABNUYeTdNp70A3My20HRL-vV13WeGFp7bn3ntuzzkIvSO4JpjwT6t6CqOBsaaY4hqzuoAv0AHBnVi0hLcvt3cqONtHr1NaYUxaJrtXaL-hjHLCmwP05_g-RbiaR51d8FUYqi-_jtvqZPbmH3DpLcTRQaryNexgPVZHvQ9x0qPL62KZu4DlT1pdzFn7XH2HOQaf3qC9QY8J3m7PQ3R58vX38mxx_uP02_LofGEYa_JCUiGahg0GAAxgO0irB0uE7Mqjx6zXvGtlo7EZmBWmE4xYwwmIRoCW0DeH6POG92buJ7AGfI56VDfRTTreq6Cdelrx7lpdhTtVGBjpRCH4sCEw0aXsvCritCJYMqqEbAUvHR-3K2K4nSFlNblU7B-1hzAnRVtCOyk6jktr-0AWUnF32H2EYLXOTq3UJju1zk5hpgpYxt4_FrEbegjrv0ooVt45iCoZB96AdRFMVja45zf8BcS0rX4</recordid><startdate>20200702</startdate><enddate>20200702</enddate><creator>Xiang, Yangfei</creator><creator>Tanaka, Yoshiaki</creator><creator>Patterson, Benjamin</creator><creator>Hwang, Sung-Min</creator><creator>Hysolli, Eriona</creator><creator>Cakir, Bilal</creator><creator>Kim, Kun-Yong</creator><creator>Wang, Wanshan</creator><creator>Kang, Young-Jin</creator><creator>Clement, Ethan M.</creator><creator>Zhong, Mei</creator><creator>Lee, Sang-Hun</creator><creator>Cho, Yee Sook</creator><creator>Patra, Prabir</creator><creator>Sullivan, Gareth J.</creator><creator>Weissman, Sherman M.</creator><creator>Park, In-Hyun</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>3HK</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7748-1293</orcidid></search><sort><creationdate>20200702</creationdate><title>Dysregulation of BRD4 Function Underlies the Functional Abnormalities of MeCP2 Mutant Neurons</title><author>Xiang, Yangfei ; Tanaka, Yoshiaki ; Patterson, Benjamin ; Hwang, Sung-Min ; Hysolli, Eriona ; Cakir, Bilal ; Kim, Kun-Yong ; Wang, Wanshan ; Kang, Young-Jin ; Clement, Ethan M. ; Zhong, Mei ; Lee, Sang-Hun ; Cho, Yee Sook ; Patra, Prabir ; Sullivan, Gareth J. ; Weissman, Sherman M. ; Park, In-Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-8277335fceeece0df8dafd1789e0db05ba69483a0cf5d7c9751dc61e737ea8eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Azepines - pharmacology</topic><topic>Brain - drug effects</topic><topic>Brain - metabolism</topic><topic>Brain - pathology</topic><topic>brain organoid</topic><topic>BRD4</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Female</topic><topic>Human Embryonic Stem Cells - drug effects</topic><topic>Human Embryonic Stem Cells - metabolism</topic><topic>Human Embryonic Stem Cells - pathology</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells - drug effects</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>Induced Pluripotent Stem Cells - pathology</topic><topic>interneuron</topic><topic>Interneurons - drug effects</topic><topic>Interneurons - metabolism</topic><topic>Interneurons - pathology</topic><topic>JQ1</topic><topic>Male</topic><topic>MeCP2</topic><topic>Methyl-CpG-Binding Protein 2 - physiology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mutation</topic><topic>Phenotype</topic><topic>Rett syndrome</topic><topic>Rett Syndrome - drug therapy</topic><topic>Rett Syndrome - genetics</topic><topic>Rett Syndrome - metabolism</topic><topic>Rett Syndrome - pathology</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcriptome - drug effects</topic><topic>Triazoles - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Yangfei</creatorcontrib><creatorcontrib>Tanaka, Yoshiaki</creatorcontrib><creatorcontrib>Patterson, Benjamin</creatorcontrib><creatorcontrib>Hwang, Sung-Min</creatorcontrib><creatorcontrib>Hysolli, Eriona</creatorcontrib><creatorcontrib>Cakir, Bilal</creatorcontrib><creatorcontrib>Kim, Kun-Yong</creatorcontrib><creatorcontrib>Wang, Wanshan</creatorcontrib><creatorcontrib>Kang, Young-Jin</creatorcontrib><creatorcontrib>Clement, Ethan M.</creatorcontrib><creatorcontrib>Zhong, Mei</creatorcontrib><creatorcontrib>Lee, Sang-Hun</creatorcontrib><creatorcontrib>Cho, Yee Sook</creatorcontrib><creatorcontrib>Patra, Prabir</creatorcontrib><creatorcontrib>Sullivan, Gareth J.</creatorcontrib><creatorcontrib>Weissman, Sherman M.</creatorcontrib><creatorcontrib>Park, In-Hyun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Yangfei</au><au>Tanaka, Yoshiaki</au><au>Patterson, Benjamin</au><au>Hwang, Sung-Min</au><au>Hysolli, Eriona</au><au>Cakir, Bilal</au><au>Kim, Kun-Yong</au><au>Wang, Wanshan</au><au>Kang, Young-Jin</au><au>Clement, Ethan M.</au><au>Zhong, Mei</au><au>Lee, Sang-Hun</au><au>Cho, Yee Sook</au><au>Patra, Prabir</au><au>Sullivan, Gareth J.</au><au>Weissman, Sherman M.</au><au>Park, In-Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dysregulation of BRD4 Function Underlies the Functional Abnormalities of MeCP2 Mutant Neurons</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2020-07-02</date><risdate>2020</risdate><volume>79</volume><issue>1</issue><spage>84</spage><epage>98.e9</epage><pages>84-98.e9</pages><issn>1097-2765</issn><issn>1097-4164</issn><eissn>1097-4164</eissn><abstract>Rett syndrome (RTT), mainly caused by mutations in methyl-CpG binding protein 2 (MeCP2), is one of the most prevalent intellectual disorders without effective therapies. Here, we used 2D and 3D human brain cultures to investigate MeCP2 function. We found that MeCP2 mutations cause severe abnormalities in human interneurons (INs). Surprisingly, treatment with a BET inhibitor, JQ1, rescued the molecular and functional phenotypes of MeCP2 mutant INs. We uncovered that abnormal increases in chromatin binding of BRD4 and enhancer-promoter interactions underlie the abnormal transcription in MeCP2 mutant INs, which were recovered to normal levels by JQ1. We revealed cell-type-specific transcriptome impairment in MeCP2 mutant region-specific human brain organoids that were rescued by JQ1. Finally, JQ1 ameliorated RTT-like phenotypes in mice. These data demonstrate that BRD4 dysregulation is a critical driver for RTT etiology and suggest that targeting BRD4 could be a potential therapeutic opportunity for RTT. [Display omitted] •MeCP2 mutation severely impairs human cortical interneurons•BRD4 dysregulation contributes to abnormal transcriptome in RTT interneurons•MeCP2 mutation causes cell-type-specific impairments in human brain organoids•BET inhibition rescues RTT-like phenotypes Xiang et al. report that dysregulation of BRD4 function is a critical driver for the abnormal transcriptome in human RTT cells and that targeting BRD4 rescues molecular and functional deficiencies of human RTT cells and ameliorates RTT progression in mice.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32526163</pmid><doi>10.1016/j.molcel.2020.05.016</doi><orcidid>https://orcid.org/0000-0001-7748-1293</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2020-07, Vol.79 (1), p.84-98.e9
issn 1097-2765
1097-4164
1097-4164
language eng
recordid cdi_proquest_miscellaneous_2412987960
source MEDLINE; NORA - Norwegian Open Research Archives; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Animals
Azepines - pharmacology
Brain - drug effects
Brain - metabolism
Brain - pathology
brain organoid
BRD4
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Female
Human Embryonic Stem Cells - drug effects
Human Embryonic Stem Cells - metabolism
Human Embryonic Stem Cells - pathology
Humans
Induced Pluripotent Stem Cells - drug effects
Induced Pluripotent Stem Cells - metabolism
Induced Pluripotent Stem Cells - pathology
interneuron
Interneurons - drug effects
Interneurons - metabolism
Interneurons - pathology
JQ1
Male
MeCP2
Methyl-CpG-Binding Protein 2 - physiology
Mice
Mice, Inbred C57BL
Mice, Knockout
Mutation
Phenotype
Rett syndrome
Rett Syndrome - drug therapy
Rett Syndrome - genetics
Rett Syndrome - metabolism
Rett Syndrome - pathology
Transcription Factors - genetics
Transcription Factors - metabolism
Transcriptome - drug effects
Triazoles - pharmacology
title Dysregulation of BRD4 Function Underlies the Functional Abnormalities of MeCP2 Mutant Neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A50%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dysregulation%20of%20BRD4%20Function%20Underlies%20the%20Functional%20Abnormalities%20of%20MeCP2%20Mutant%20Neurons&rft.jtitle=Molecular%20cell&rft.au=Xiang,%20Yangfei&rft.date=2020-07-02&rft.volume=79&rft.issue=1&rft.spage=84&rft.epage=98.e9&rft.pages=84-98.e9&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2020.05.016&rft_dat=%3Cproquest_pubme%3E2412987960%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412987960&rft_id=info:pmid/32526163&rft_els_id=S1097276520303178&rfr_iscdi=true