Dysregulation of BRD4 Function Underlies the Functional Abnormalities of MeCP2 Mutant Neurons
Rett syndrome (RTT), mainly caused by mutations in methyl-CpG binding protein 2 (MeCP2), is one of the most prevalent intellectual disorders without effective therapies. Here, we used 2D and 3D human brain cultures to investigate MeCP2 function. We found that MeCP2 mutations cause severe abnormaliti...
Gespeichert in:
Veröffentlicht in: | Molecular cell 2020-07, Vol.79 (1), p.84-98.e9 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 98.e9 |
---|---|
container_issue | 1 |
container_start_page | 84 |
container_title | Molecular cell |
container_volume | 79 |
creator | Xiang, Yangfei Tanaka, Yoshiaki Patterson, Benjamin Hwang, Sung-Min Hysolli, Eriona Cakir, Bilal Kim, Kun-Yong Wang, Wanshan Kang, Young-Jin Clement, Ethan M. Zhong, Mei Lee, Sang-Hun Cho, Yee Sook Patra, Prabir Sullivan, Gareth J. Weissman, Sherman M. Park, In-Hyun |
description | Rett syndrome (RTT), mainly caused by mutations in methyl-CpG binding protein 2 (MeCP2), is one of the most prevalent intellectual disorders without effective therapies. Here, we used 2D and 3D human brain cultures to investigate MeCP2 function. We found that MeCP2 mutations cause severe abnormalities in human interneurons (INs). Surprisingly, treatment with a BET inhibitor, JQ1, rescued the molecular and functional phenotypes of MeCP2 mutant INs. We uncovered that abnormal increases in chromatin binding of BRD4 and enhancer-promoter interactions underlie the abnormal transcription in MeCP2 mutant INs, which were recovered to normal levels by JQ1. We revealed cell-type-specific transcriptome impairment in MeCP2 mutant region-specific human brain organoids that were rescued by JQ1. Finally, JQ1 ameliorated RTT-like phenotypes in mice. These data demonstrate that BRD4 dysregulation is a critical driver for RTT etiology and suggest that targeting BRD4 could be a potential therapeutic opportunity for RTT.
[Display omitted]
•MeCP2 mutation severely impairs human cortical interneurons•BRD4 dysregulation contributes to abnormal transcriptome in RTT interneurons•MeCP2 mutation causes cell-type-specific impairments in human brain organoids•BET inhibition rescues RTT-like phenotypes
Xiang et al. report that dysregulation of BRD4 function is a critical driver for the abnormal transcriptome in human RTT cells and that targeting BRD4 rescues molecular and functional deficiencies of human RTT cells and ameliorates RTT progression in mice. |
doi_str_mv | 10.1016/j.molcel.2020.05.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2412987960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276520303178</els_id><sourcerecordid>2412987960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-8277335fceeece0df8dafd1789e0db05ba69483a0cf5d7c9751dc61e737ea8eb3</originalsourceid><addsrcrecordid>eNp9UV1PFDEUbYxEEP0HRufRlx3bzvRjXkxwETABNUYeTdNp70A3My20HRL-vV13WeGFp7bn3ntuzzkIvSO4JpjwT6t6CqOBsaaY4hqzuoAv0AHBnVi0hLcvt3cqONtHr1NaYUxaJrtXaL-hjHLCmwP05_g-RbiaR51d8FUYqi-_jtvqZPbmH3DpLcTRQaryNexgPVZHvQ9x0qPL62KZu4DlT1pdzFn7XH2HOQaf3qC9QY8J3m7PQ3R58vX38mxx_uP02_LofGEYa_JCUiGahg0GAAxgO0irB0uE7Mqjx6zXvGtlo7EZmBWmE4xYwwmIRoCW0DeH6POG92buJ7AGfI56VDfRTTreq6Cdelrx7lpdhTtVGBjpRCH4sCEw0aXsvCritCJYMqqEbAUvHR-3K2K4nSFlNblU7B-1hzAnRVtCOyk6jktr-0AWUnF32H2EYLXOTq3UJju1zk5hpgpYxt4_FrEbegjrv0ooVt45iCoZB96AdRFMVja45zf8BcS0rX4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412987960</pqid></control><display><type>article</type><title>Dysregulation of BRD4 Function Underlies the Functional Abnormalities of MeCP2 Mutant Neurons</title><source>MEDLINE</source><source>NORA - Norwegian Open Research Archives</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Xiang, Yangfei ; Tanaka, Yoshiaki ; Patterson, Benjamin ; Hwang, Sung-Min ; Hysolli, Eriona ; Cakir, Bilal ; Kim, Kun-Yong ; Wang, Wanshan ; Kang, Young-Jin ; Clement, Ethan M. ; Zhong, Mei ; Lee, Sang-Hun ; Cho, Yee Sook ; Patra, Prabir ; Sullivan, Gareth J. ; Weissman, Sherman M. ; Park, In-Hyun</creator><creatorcontrib>Xiang, Yangfei ; Tanaka, Yoshiaki ; Patterson, Benjamin ; Hwang, Sung-Min ; Hysolli, Eriona ; Cakir, Bilal ; Kim, Kun-Yong ; Wang, Wanshan ; Kang, Young-Jin ; Clement, Ethan M. ; Zhong, Mei ; Lee, Sang-Hun ; Cho, Yee Sook ; Patra, Prabir ; Sullivan, Gareth J. ; Weissman, Sherman M. ; Park, In-Hyun</creatorcontrib><description>Rett syndrome (RTT), mainly caused by mutations in methyl-CpG binding protein 2 (MeCP2), is one of the most prevalent intellectual disorders without effective therapies. Here, we used 2D and 3D human brain cultures to investigate MeCP2 function. We found that MeCP2 mutations cause severe abnormalities in human interneurons (INs). Surprisingly, treatment with a BET inhibitor, JQ1, rescued the molecular and functional phenotypes of MeCP2 mutant INs. We uncovered that abnormal increases in chromatin binding of BRD4 and enhancer-promoter interactions underlie the abnormal transcription in MeCP2 mutant INs, which were recovered to normal levels by JQ1. We revealed cell-type-specific transcriptome impairment in MeCP2 mutant region-specific human brain organoids that were rescued by JQ1. Finally, JQ1 ameliorated RTT-like phenotypes in mice. These data demonstrate that BRD4 dysregulation is a critical driver for RTT etiology and suggest that targeting BRD4 could be a potential therapeutic opportunity for RTT.
[Display omitted]
•MeCP2 mutation severely impairs human cortical interneurons•BRD4 dysregulation contributes to abnormal transcriptome in RTT interneurons•MeCP2 mutation causes cell-type-specific impairments in human brain organoids•BET inhibition rescues RTT-like phenotypes
Xiang et al. report that dysregulation of BRD4 function is a critical driver for the abnormal transcriptome in human RTT cells and that targeting BRD4 rescues molecular and functional deficiencies of human RTT cells and ameliorates RTT progression in mice.</description><identifier>ISSN: 1097-2765</identifier><identifier>ISSN: 1097-4164</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2020.05.016</identifier><identifier>PMID: 32526163</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Azepines - pharmacology ; Brain - drug effects ; Brain - metabolism ; Brain - pathology ; brain organoid ; BRD4 ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Female ; Human Embryonic Stem Cells - drug effects ; Human Embryonic Stem Cells - metabolism ; Human Embryonic Stem Cells - pathology ; Humans ; Induced Pluripotent Stem Cells - drug effects ; Induced Pluripotent Stem Cells - metabolism ; Induced Pluripotent Stem Cells - pathology ; interneuron ; Interneurons - drug effects ; Interneurons - metabolism ; Interneurons - pathology ; JQ1 ; Male ; MeCP2 ; Methyl-CpG-Binding Protein 2 - physiology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mutation ; Phenotype ; Rett syndrome ; Rett Syndrome - drug therapy ; Rett Syndrome - genetics ; Rett Syndrome - metabolism ; Rett Syndrome - pathology ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcriptome - drug effects ; Triazoles - pharmacology</subject><ispartof>Molecular cell, 2020-07, Vol.79 (1), p.84-98.e9</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-8277335fceeece0df8dafd1789e0db05ba69483a0cf5d7c9751dc61e737ea8eb3</citedby><cites>FETCH-LOGICAL-c553t-8277335fceeece0df8dafd1789e0db05ba69483a0cf5d7c9751dc61e737ea8eb3</cites><orcidid>0000-0001-7748-1293</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molcel.2020.05.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,26548,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32526163$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiang, Yangfei</creatorcontrib><creatorcontrib>Tanaka, Yoshiaki</creatorcontrib><creatorcontrib>Patterson, Benjamin</creatorcontrib><creatorcontrib>Hwang, Sung-Min</creatorcontrib><creatorcontrib>Hysolli, Eriona</creatorcontrib><creatorcontrib>Cakir, Bilal</creatorcontrib><creatorcontrib>Kim, Kun-Yong</creatorcontrib><creatorcontrib>Wang, Wanshan</creatorcontrib><creatorcontrib>Kang, Young-Jin</creatorcontrib><creatorcontrib>Clement, Ethan M.</creatorcontrib><creatorcontrib>Zhong, Mei</creatorcontrib><creatorcontrib>Lee, Sang-Hun</creatorcontrib><creatorcontrib>Cho, Yee Sook</creatorcontrib><creatorcontrib>Patra, Prabir</creatorcontrib><creatorcontrib>Sullivan, Gareth J.</creatorcontrib><creatorcontrib>Weissman, Sherman M.</creatorcontrib><creatorcontrib>Park, In-Hyun</creatorcontrib><title>Dysregulation of BRD4 Function Underlies the Functional Abnormalities of MeCP2 Mutant Neurons</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Rett syndrome (RTT), mainly caused by mutations in methyl-CpG binding protein 2 (MeCP2), is one of the most prevalent intellectual disorders without effective therapies. Here, we used 2D and 3D human brain cultures to investigate MeCP2 function. We found that MeCP2 mutations cause severe abnormalities in human interneurons (INs). Surprisingly, treatment with a BET inhibitor, JQ1, rescued the molecular and functional phenotypes of MeCP2 mutant INs. We uncovered that abnormal increases in chromatin binding of BRD4 and enhancer-promoter interactions underlie the abnormal transcription in MeCP2 mutant INs, which were recovered to normal levels by JQ1. We revealed cell-type-specific transcriptome impairment in MeCP2 mutant region-specific human brain organoids that were rescued by JQ1. Finally, JQ1 ameliorated RTT-like phenotypes in mice. These data demonstrate that BRD4 dysregulation is a critical driver for RTT etiology and suggest that targeting BRD4 could be a potential therapeutic opportunity for RTT.
[Display omitted]
•MeCP2 mutation severely impairs human cortical interneurons•BRD4 dysregulation contributes to abnormal transcriptome in RTT interneurons•MeCP2 mutation causes cell-type-specific impairments in human brain organoids•BET inhibition rescues RTT-like phenotypes
Xiang et al. report that dysregulation of BRD4 function is a critical driver for the abnormal transcriptome in human RTT cells and that targeting BRD4 rescues molecular and functional deficiencies of human RTT cells and ameliorates RTT progression in mice.</description><subject>Animals</subject><subject>Azepines - pharmacology</subject><subject>Brain - drug effects</subject><subject>Brain - metabolism</subject><subject>Brain - pathology</subject><subject>brain organoid</subject><subject>BRD4</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Female</subject><subject>Human Embryonic Stem Cells - drug effects</subject><subject>Human Embryonic Stem Cells - metabolism</subject><subject>Human Embryonic Stem Cells - pathology</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells - drug effects</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>Induced Pluripotent Stem Cells - pathology</subject><subject>interneuron</subject><subject>Interneurons - drug effects</subject><subject>Interneurons - metabolism</subject><subject>Interneurons - pathology</subject><subject>JQ1</subject><subject>Male</subject><subject>MeCP2</subject><subject>Methyl-CpG-Binding Protein 2 - physiology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mutation</subject><subject>Phenotype</subject><subject>Rett syndrome</subject><subject>Rett Syndrome - drug therapy</subject><subject>Rett Syndrome - genetics</subject><subject>Rett Syndrome - metabolism</subject><subject>Rett Syndrome - pathology</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcriptome - drug effects</subject><subject>Triazoles - pharmacology</subject><issn>1097-2765</issn><issn>1097-4164</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>3HK</sourceid><recordid>eNp9UV1PFDEUbYxEEP0HRufRlx3bzvRjXkxwETABNUYeTdNp70A3My20HRL-vV13WeGFp7bn3ntuzzkIvSO4JpjwT6t6CqOBsaaY4hqzuoAv0AHBnVi0hLcvt3cqONtHr1NaYUxaJrtXaL-hjHLCmwP05_g-RbiaR51d8FUYqi-_jtvqZPbmH3DpLcTRQaryNexgPVZHvQ9x0qPL62KZu4DlT1pdzFn7XH2HOQaf3qC9QY8J3m7PQ3R58vX38mxx_uP02_LofGEYa_JCUiGahg0GAAxgO0irB0uE7Mqjx6zXvGtlo7EZmBWmE4xYwwmIRoCW0DeH6POG92buJ7AGfI56VDfRTTreq6Cdelrx7lpdhTtVGBjpRCH4sCEw0aXsvCritCJYMqqEbAUvHR-3K2K4nSFlNblU7B-1hzAnRVtCOyk6jktr-0AWUnF32H2EYLXOTq3UJju1zk5hpgpYxt4_FrEbegjrv0ooVt45iCoZB96AdRFMVja45zf8BcS0rX4</recordid><startdate>20200702</startdate><enddate>20200702</enddate><creator>Xiang, Yangfei</creator><creator>Tanaka, Yoshiaki</creator><creator>Patterson, Benjamin</creator><creator>Hwang, Sung-Min</creator><creator>Hysolli, Eriona</creator><creator>Cakir, Bilal</creator><creator>Kim, Kun-Yong</creator><creator>Wang, Wanshan</creator><creator>Kang, Young-Jin</creator><creator>Clement, Ethan M.</creator><creator>Zhong, Mei</creator><creator>Lee, Sang-Hun</creator><creator>Cho, Yee Sook</creator><creator>Patra, Prabir</creator><creator>Sullivan, Gareth J.</creator><creator>Weissman, Sherman M.</creator><creator>Park, In-Hyun</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>3HK</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7748-1293</orcidid></search><sort><creationdate>20200702</creationdate><title>Dysregulation of BRD4 Function Underlies the Functional Abnormalities of MeCP2 Mutant Neurons</title><author>Xiang, Yangfei ; Tanaka, Yoshiaki ; Patterson, Benjamin ; Hwang, Sung-Min ; Hysolli, Eriona ; Cakir, Bilal ; Kim, Kun-Yong ; Wang, Wanshan ; Kang, Young-Jin ; Clement, Ethan M. ; Zhong, Mei ; Lee, Sang-Hun ; Cho, Yee Sook ; Patra, Prabir ; Sullivan, Gareth J. ; Weissman, Sherman M. ; Park, In-Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-8277335fceeece0df8dafd1789e0db05ba69483a0cf5d7c9751dc61e737ea8eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Azepines - pharmacology</topic><topic>Brain - drug effects</topic><topic>Brain - metabolism</topic><topic>Brain - pathology</topic><topic>brain organoid</topic><topic>BRD4</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Female</topic><topic>Human Embryonic Stem Cells - drug effects</topic><topic>Human Embryonic Stem Cells - metabolism</topic><topic>Human Embryonic Stem Cells - pathology</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells - drug effects</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>Induced Pluripotent Stem Cells - pathology</topic><topic>interneuron</topic><topic>Interneurons - drug effects</topic><topic>Interneurons - metabolism</topic><topic>Interneurons - pathology</topic><topic>JQ1</topic><topic>Male</topic><topic>MeCP2</topic><topic>Methyl-CpG-Binding Protein 2 - physiology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mutation</topic><topic>Phenotype</topic><topic>Rett syndrome</topic><topic>Rett Syndrome - drug therapy</topic><topic>Rett Syndrome - genetics</topic><topic>Rett Syndrome - metabolism</topic><topic>Rett Syndrome - pathology</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcriptome - drug effects</topic><topic>Triazoles - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Yangfei</creatorcontrib><creatorcontrib>Tanaka, Yoshiaki</creatorcontrib><creatorcontrib>Patterson, Benjamin</creatorcontrib><creatorcontrib>Hwang, Sung-Min</creatorcontrib><creatorcontrib>Hysolli, Eriona</creatorcontrib><creatorcontrib>Cakir, Bilal</creatorcontrib><creatorcontrib>Kim, Kun-Yong</creatorcontrib><creatorcontrib>Wang, Wanshan</creatorcontrib><creatorcontrib>Kang, Young-Jin</creatorcontrib><creatorcontrib>Clement, Ethan M.</creatorcontrib><creatorcontrib>Zhong, Mei</creatorcontrib><creatorcontrib>Lee, Sang-Hun</creatorcontrib><creatorcontrib>Cho, Yee Sook</creatorcontrib><creatorcontrib>Patra, Prabir</creatorcontrib><creatorcontrib>Sullivan, Gareth J.</creatorcontrib><creatorcontrib>Weissman, Sherman M.</creatorcontrib><creatorcontrib>Park, In-Hyun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Yangfei</au><au>Tanaka, Yoshiaki</au><au>Patterson, Benjamin</au><au>Hwang, Sung-Min</au><au>Hysolli, Eriona</au><au>Cakir, Bilal</au><au>Kim, Kun-Yong</au><au>Wang, Wanshan</au><au>Kang, Young-Jin</au><au>Clement, Ethan M.</au><au>Zhong, Mei</au><au>Lee, Sang-Hun</au><au>Cho, Yee Sook</au><au>Patra, Prabir</au><au>Sullivan, Gareth J.</au><au>Weissman, Sherman M.</au><au>Park, In-Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dysregulation of BRD4 Function Underlies the Functional Abnormalities of MeCP2 Mutant Neurons</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2020-07-02</date><risdate>2020</risdate><volume>79</volume><issue>1</issue><spage>84</spage><epage>98.e9</epage><pages>84-98.e9</pages><issn>1097-2765</issn><issn>1097-4164</issn><eissn>1097-4164</eissn><abstract>Rett syndrome (RTT), mainly caused by mutations in methyl-CpG binding protein 2 (MeCP2), is one of the most prevalent intellectual disorders without effective therapies. Here, we used 2D and 3D human brain cultures to investigate MeCP2 function. We found that MeCP2 mutations cause severe abnormalities in human interneurons (INs). Surprisingly, treatment with a BET inhibitor, JQ1, rescued the molecular and functional phenotypes of MeCP2 mutant INs. We uncovered that abnormal increases in chromatin binding of BRD4 and enhancer-promoter interactions underlie the abnormal transcription in MeCP2 mutant INs, which were recovered to normal levels by JQ1. We revealed cell-type-specific transcriptome impairment in MeCP2 mutant region-specific human brain organoids that were rescued by JQ1. Finally, JQ1 ameliorated RTT-like phenotypes in mice. These data demonstrate that BRD4 dysregulation is a critical driver for RTT etiology and suggest that targeting BRD4 could be a potential therapeutic opportunity for RTT.
[Display omitted]
•MeCP2 mutation severely impairs human cortical interneurons•BRD4 dysregulation contributes to abnormal transcriptome in RTT interneurons•MeCP2 mutation causes cell-type-specific impairments in human brain organoids•BET inhibition rescues RTT-like phenotypes
Xiang et al. report that dysregulation of BRD4 function is a critical driver for the abnormal transcriptome in human RTT cells and that targeting BRD4 rescues molecular and functional deficiencies of human RTT cells and ameliorates RTT progression in mice.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32526163</pmid><doi>10.1016/j.molcel.2020.05.016</doi><orcidid>https://orcid.org/0000-0001-7748-1293</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-2765 |
ispartof | Molecular cell, 2020-07, Vol.79 (1), p.84-98.e9 |
issn | 1097-2765 1097-4164 1097-4164 |
language | eng |
recordid | cdi_proquest_miscellaneous_2412987960 |
source | MEDLINE; NORA - Norwegian Open Research Archives; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | Animals Azepines - pharmacology Brain - drug effects Brain - metabolism Brain - pathology brain organoid BRD4 Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Female Human Embryonic Stem Cells - drug effects Human Embryonic Stem Cells - metabolism Human Embryonic Stem Cells - pathology Humans Induced Pluripotent Stem Cells - drug effects Induced Pluripotent Stem Cells - metabolism Induced Pluripotent Stem Cells - pathology interneuron Interneurons - drug effects Interneurons - metabolism Interneurons - pathology JQ1 Male MeCP2 Methyl-CpG-Binding Protein 2 - physiology Mice Mice, Inbred C57BL Mice, Knockout Mutation Phenotype Rett syndrome Rett Syndrome - drug therapy Rett Syndrome - genetics Rett Syndrome - metabolism Rett Syndrome - pathology Transcription Factors - genetics Transcription Factors - metabolism Transcriptome - drug effects Triazoles - pharmacology |
title | Dysregulation of BRD4 Function Underlies the Functional Abnormalities of MeCP2 Mutant Neurons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A50%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dysregulation%20of%20BRD4%20Function%20Underlies%20the%20Functional%20Abnormalities%20of%20MeCP2%20Mutant%20Neurons&rft.jtitle=Molecular%20cell&rft.au=Xiang,%20Yangfei&rft.date=2020-07-02&rft.volume=79&rft.issue=1&rft.spage=84&rft.epage=98.e9&rft.pages=84-98.e9&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2020.05.016&rft_dat=%3Cproquest_pubme%3E2412987960%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412987960&rft_id=info:pmid/32526163&rft_els_id=S1097276520303178&rfr_iscdi=true |