Characterization of wetting using topological principles

[Display omitted] Understanding wetting behavior is of great importance for natural systems and technological applications. The traditional concept of contact angle, a purely geometrical measure related to curvature, is often used for characterizing the wetting state of a system. It can be determine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2020-10, Vol.578, p.106-115
Hauptverfasser: Sun, Chenhao, McClure, James E., Mostaghimi, Peyman, Herring, Anna L., Meisenheimer, Douglas E., Wildenschild, Dorthe, Berg, Steffen, Armstrong, Ryan T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 115
container_issue
container_start_page 106
container_title Journal of colloid and interface science
container_volume 578
creator Sun, Chenhao
McClure, James E.
Mostaghimi, Peyman
Herring, Anna L.
Meisenheimer, Douglas E.
Wildenschild, Dorthe
Berg, Steffen
Armstrong, Ryan T.
description [Display omitted] Understanding wetting behavior is of great importance for natural systems and technological applications. The traditional concept of contact angle, a purely geometrical measure related to curvature, is often used for characterizing the wetting state of a system. It can be determined from Young’s equation by applying equilibrium thermodynamics. However, whether contact angle is a representative measure of wetting for systems with significant complexity is unclear. Herein, we hypothesize that topological principles based on the Gauss-Bonnet theorem could yield a robust measure to characterize wetting. We introduce a macroscopic contact angle based on the deficit curvature of the fluid interfaces that are imposed by contacts with other immiscible phases. We perform sessile droplet simulations followed by multiphase experiments for porous sintered glass and Bentheimer sandstone to assess the sensitivity and robustness of the topological approach and compare the results to other traditional approaches. We show that the presented topological principle is consistent with thermodynamics under the simplest conditions through a variational analysis. Furthermore, we elucidate that at sufficiently high image resolution the proposed topological approach and local contact angle measurements are comparable. While at lower resolutions, the proposed approach provides more accurate results being robust to resolution-based effects. Overall, the presented concepts open new pathways to characterize the wetting state of complex systems and theoretical developments to study multiphase systems.
doi_str_mv 10.1016/j.jcis.2020.05.076
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2412220608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979720306822</els_id><sourcerecordid>2412220608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-b2bc75bb61847143f22abf101ac8b7a91e09b7fb73f206ef8b4e702fb8eb4e5c3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU89emmdpH_SghdZdBUWvOg5JNnJmtJtapJV9NObsp69zAzMe8ObHyHXFAoKtLnti17bUDBgUEBdAG9OyIJCV-ecQnlKFgCM5h3v-Dm5CKEHoLSuuwVpV-_SSx3R2x8ZrRszZ7IvjNGOu-wQ5hrd5Aa3s1oO2eTtqO00YLgkZ0YOAa_--pK8PT68rp7yzcv6eXW_yXXJecwVU5rXSjW0rTitSsOYVCZllrpVXHYUoVPcKJ420KBpVYUcmFEtpqnW5ZLcHO9O3n0cMESxt0HjMMgR3SEIVlHGkhXaJGVHqfYuBI9GpLh76b8FBTFjEr2YMYkZk4BaJEzJdHc0YXri06IXQVscNW6tRx3F1tn_7L8CsXHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412220608</pqid></control><display><type>article</type><title>Characterization of wetting using topological principles</title><source>Elsevier ScienceDirect Journals</source><creator>Sun, Chenhao ; McClure, James E. ; Mostaghimi, Peyman ; Herring, Anna L. ; Meisenheimer, Douglas E. ; Wildenschild, Dorthe ; Berg, Steffen ; Armstrong, Ryan T.</creator><creatorcontrib>Sun, Chenhao ; McClure, James E. ; Mostaghimi, Peyman ; Herring, Anna L. ; Meisenheimer, Douglas E. ; Wildenschild, Dorthe ; Berg, Steffen ; Armstrong, Ryan T.</creatorcontrib><description>[Display omitted] Understanding wetting behavior is of great importance for natural systems and technological applications. The traditional concept of contact angle, a purely geometrical measure related to curvature, is often used for characterizing the wetting state of a system. It can be determined from Young’s equation by applying equilibrium thermodynamics. However, whether contact angle is a representative measure of wetting for systems with significant complexity is unclear. Herein, we hypothesize that topological principles based on the Gauss-Bonnet theorem could yield a robust measure to characterize wetting. We introduce a macroscopic contact angle based on the deficit curvature of the fluid interfaces that are imposed by contacts with other immiscible phases. We perform sessile droplet simulations followed by multiphase experiments for porous sintered glass and Bentheimer sandstone to assess the sensitivity and robustness of the topological approach and compare the results to other traditional approaches. We show that the presented topological principle is consistent with thermodynamics under the simplest conditions through a variational analysis. Furthermore, we elucidate that at sufficiently high image resolution the proposed topological approach and local contact angle measurements are comparable. While at lower resolutions, the proposed approach provides more accurate results being robust to resolution-based effects. Overall, the presented concepts open new pathways to characterize the wetting state of complex systems and theoretical developments to study multiphase systems.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2020.05.076</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Gauss-Bonnet theorem ; Gaussian curvature ; Geometric state of fluids ; Interfacial curvature ; Multiphase flow ; Porous media ; Topological principles ; Wetting behavior</subject><ispartof>Journal of colloid and interface science, 2020-10, Vol.578, p.106-115</ispartof><rights>2020 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-b2bc75bb61847143f22abf101ac8b7a91e09b7fb73f206ef8b4e702fb8eb4e5c3</citedby><cites>FETCH-LOGICAL-c377t-b2bc75bb61847143f22abf101ac8b7a91e09b7fb73f206ef8b4e702fb8eb4e5c3</cites><orcidid>0000-0003-2441-7719 ; 0000-0001-5243-0123 ; 0000-0003-1726-7601</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021979720306822$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Sun, Chenhao</creatorcontrib><creatorcontrib>McClure, James E.</creatorcontrib><creatorcontrib>Mostaghimi, Peyman</creatorcontrib><creatorcontrib>Herring, Anna L.</creatorcontrib><creatorcontrib>Meisenheimer, Douglas E.</creatorcontrib><creatorcontrib>Wildenschild, Dorthe</creatorcontrib><creatorcontrib>Berg, Steffen</creatorcontrib><creatorcontrib>Armstrong, Ryan T.</creatorcontrib><title>Characterization of wetting using topological principles</title><title>Journal of colloid and interface science</title><description>[Display omitted] Understanding wetting behavior is of great importance for natural systems and technological applications. The traditional concept of contact angle, a purely geometrical measure related to curvature, is often used for characterizing the wetting state of a system. It can be determined from Young’s equation by applying equilibrium thermodynamics. However, whether contact angle is a representative measure of wetting for systems with significant complexity is unclear. Herein, we hypothesize that topological principles based on the Gauss-Bonnet theorem could yield a robust measure to characterize wetting. We introduce a macroscopic contact angle based on the deficit curvature of the fluid interfaces that are imposed by contacts with other immiscible phases. We perform sessile droplet simulations followed by multiphase experiments for porous sintered glass and Bentheimer sandstone to assess the sensitivity and robustness of the topological approach and compare the results to other traditional approaches. We show that the presented topological principle is consistent with thermodynamics under the simplest conditions through a variational analysis. Furthermore, we elucidate that at sufficiently high image resolution the proposed topological approach and local contact angle measurements are comparable. While at lower resolutions, the proposed approach provides more accurate results being robust to resolution-based effects. Overall, the presented concepts open new pathways to characterize the wetting state of complex systems and theoretical developments to study multiphase systems.</description><subject>Gauss-Bonnet theorem</subject><subject>Gaussian curvature</subject><subject>Geometric state of fluids</subject><subject>Interfacial curvature</subject><subject>Multiphase flow</subject><subject>Porous media</subject><subject>Topological principles</subject><subject>Wetting behavior</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU89emmdpH_SghdZdBUWvOg5JNnJmtJtapJV9NObsp69zAzMe8ObHyHXFAoKtLnti17bUDBgUEBdAG9OyIJCV-ecQnlKFgCM5h3v-Dm5CKEHoLSuuwVpV-_SSx3R2x8ZrRszZ7IvjNGOu-wQ5hrd5Aa3s1oO2eTtqO00YLgkZ0YOAa_--pK8PT68rp7yzcv6eXW_yXXJecwVU5rXSjW0rTitSsOYVCZllrpVXHYUoVPcKJ420KBpVYUcmFEtpqnW5ZLcHO9O3n0cMESxt0HjMMgR3SEIVlHGkhXaJGVHqfYuBI9GpLh76b8FBTFjEr2YMYkZk4BaJEzJdHc0YXri06IXQVscNW6tRx3F1tn_7L8CsXHA</recordid><startdate>20201015</startdate><enddate>20201015</enddate><creator>Sun, Chenhao</creator><creator>McClure, James E.</creator><creator>Mostaghimi, Peyman</creator><creator>Herring, Anna L.</creator><creator>Meisenheimer, Douglas E.</creator><creator>Wildenschild, Dorthe</creator><creator>Berg, Steffen</creator><creator>Armstrong, Ryan T.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2441-7719</orcidid><orcidid>https://orcid.org/0000-0001-5243-0123</orcidid><orcidid>https://orcid.org/0000-0003-1726-7601</orcidid></search><sort><creationdate>20201015</creationdate><title>Characterization of wetting using topological principles</title><author>Sun, Chenhao ; McClure, James E. ; Mostaghimi, Peyman ; Herring, Anna L. ; Meisenheimer, Douglas E. ; Wildenschild, Dorthe ; Berg, Steffen ; Armstrong, Ryan T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-b2bc75bb61847143f22abf101ac8b7a91e09b7fb73f206ef8b4e702fb8eb4e5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Gauss-Bonnet theorem</topic><topic>Gaussian curvature</topic><topic>Geometric state of fluids</topic><topic>Interfacial curvature</topic><topic>Multiphase flow</topic><topic>Porous media</topic><topic>Topological principles</topic><topic>Wetting behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Chenhao</creatorcontrib><creatorcontrib>McClure, James E.</creatorcontrib><creatorcontrib>Mostaghimi, Peyman</creatorcontrib><creatorcontrib>Herring, Anna L.</creatorcontrib><creatorcontrib>Meisenheimer, Douglas E.</creatorcontrib><creatorcontrib>Wildenschild, Dorthe</creatorcontrib><creatorcontrib>Berg, Steffen</creatorcontrib><creatorcontrib>Armstrong, Ryan T.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Chenhao</au><au>McClure, James E.</au><au>Mostaghimi, Peyman</au><au>Herring, Anna L.</au><au>Meisenheimer, Douglas E.</au><au>Wildenschild, Dorthe</au><au>Berg, Steffen</au><au>Armstrong, Ryan T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of wetting using topological principles</atitle><jtitle>Journal of colloid and interface science</jtitle><date>2020-10-15</date><risdate>2020</risdate><volume>578</volume><spage>106</spage><epage>115</epage><pages>106-115</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted] Understanding wetting behavior is of great importance for natural systems and technological applications. The traditional concept of contact angle, a purely geometrical measure related to curvature, is often used for characterizing the wetting state of a system. It can be determined from Young’s equation by applying equilibrium thermodynamics. However, whether contact angle is a representative measure of wetting for systems with significant complexity is unclear. Herein, we hypothesize that topological principles based on the Gauss-Bonnet theorem could yield a robust measure to characterize wetting. We introduce a macroscopic contact angle based on the deficit curvature of the fluid interfaces that are imposed by contacts with other immiscible phases. We perform sessile droplet simulations followed by multiphase experiments for porous sintered glass and Bentheimer sandstone to assess the sensitivity and robustness of the topological approach and compare the results to other traditional approaches. We show that the presented topological principle is consistent with thermodynamics under the simplest conditions through a variational analysis. Furthermore, we elucidate that at sufficiently high image resolution the proposed topological approach and local contact angle measurements are comparable. While at lower resolutions, the proposed approach provides more accurate results being robust to resolution-based effects. Overall, the presented concepts open new pathways to characterize the wetting state of complex systems and theoretical developments to study multiphase systems.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcis.2020.05.076</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2441-7719</orcidid><orcidid>https://orcid.org/0000-0001-5243-0123</orcidid><orcidid>https://orcid.org/0000-0003-1726-7601</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2020-10, Vol.578, p.106-115
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_2412220608
source Elsevier ScienceDirect Journals
subjects Gauss-Bonnet theorem
Gaussian curvature
Geometric state of fluids
Interfacial curvature
Multiphase flow
Porous media
Topological principles
Wetting behavior
title Characterization of wetting using topological principles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A44%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20wetting%20using%20topological%20principles&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Sun,%20Chenhao&rft.date=2020-10-15&rft.volume=578&rft.spage=106&rft.epage=115&rft.pages=106-115&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2020.05.076&rft_dat=%3Cproquest_cross%3E2412220608%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412220608&rft_id=info:pmid/&rft_els_id=S0021979720306822&rfr_iscdi=true