Boron-doped Biphasic Hydroxyapatite/β-Tricalcium Phosphate for Bone Tissue Engineering
Boron-doped hydroxyapatite/tricalcium phosphates (BHTs) were synthesized to study boron uptake and correlate structural alterations of incremental boron addition (0 to 10 mol%). BHTs with a Ca/P ratio of 1.6 were prepared by a wet precipitation/microwave reflux method, sieved (< 70 μm) and charac...
Gespeichert in:
Veröffentlicht in: | Biological trace element research 2021-03, Vol.199 (3), p.968-980 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 980 |
---|---|
container_issue | 3 |
container_start_page | 968 |
container_title | Biological trace element research |
container_volume | 199 |
creator | Pazarçeviren, Ahmet Engin Tezcaner, Ayşen Keskin, Dilek Kolukısa, Serap Topsoy Sürdem, Sedat Evis, Zafer |
description | Boron-doped hydroxyapatite/tricalcium phosphates (BHTs) were synthesized to study boron uptake and correlate structural alterations of incremental boron addition (0 to 10 mol%). BHTs with a Ca/P ratio of 1.6 were prepared by a wet precipitation/microwave reflux method, sieved (< 70 μm) and characterized. XRD and FTIR analyses revealed that boron slightly distorted apatite crystal, increased crystallinity (95.78 ± 2.08% for 5BHT) and crystallite size (103.39 ± 23.47 nm for 5BHT) and still, boron addition did not show any further detrimental effects. Total surface area (4.05 ± 0.82 m
2
/g for 10BHT) and mesoporosity (23.90 ± 7.92 μL/g for 10BHT) were expanded as boron content was increased. Moreover, boron addition made grains become smaller (0.21 ± 0.06 μm for 5BHT) and ordered while hardness (10.51 ± 0.86 GPa for 10BHT) increased. Boron incorporation enhanced bioactivity with significantly highest calcium phosphate deposition and protein adsorption (135.29 ± 29.58 μg on 10BHT). In return, boron favored highest alkaline phosphatase activity (4.80 ± 0.40 M
ALP
/ng
DNA
.min), intracellular calcium (23.61 ± 0.68 g/g
DNA
), phosphate (31.84 ± 4.68 g/g
DNA
), and protein (23.70 ± 3.46 g/g
DNA
) storage in 5BHT without cytotoxicity (128 ± 18% viability compared to pure HT). Compared to literature, it can be pointed out that we successfully employed an optimal procedure for production of BHTs and incorporated significantly higher boron content in HT (5.23 mol%). Additionally, results tended to conclude that 5BHT samples (5 mol% boron in HT) demonstrated a very high potential to be used in composite bone tissue constructs. |
doi_str_mv | 10.1007/s12011-020-02230-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2412216594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2412216594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-8f218418cfd1d15f9f451cfffc0d5bb84eaea7bb1ac93065868a9cbde040bcda3</originalsourceid><addsrcrecordid>eNp9kMtuFDEQRS1ERIbAD7BALbFhY1LlR7d7yUSBIEUii4mytNx-JI5m2o3dLWV-iw_hm3CYABILFqXanHurdAh5g_ABAbrTggwQKTCowzhQ9YysUMqeQsfgOVkBtpyKXolj8rKUewDsWM9fkGPOJBOcixW5WaecRurS5F2zjtOdKdE2F3uX08PeTGaOsz_98Z1ucrRma-Oya67uUqnc7JuQcrNOo282sZTFN-fjbRy9z3G8fUWOgtkW__ppn5DrT-ebswt6-fXzl7OPl9TyTs5UBYZKoLLBoUMZ-iAk2hCCBSeHQQlvvOmGAY3tObRStcr0dnAeBAzWGX5C3h96p5y-Lb7MeheL9dutGX1aimYCGcNW9qKi7_5B79OSx_pdpTrVtrLrsVLsQNmcSsk-6CnHncl7jaAfteuDdl2161_ataqht0_Vy7Dz7k_kt-cK8ANQpkc7Pv-9_Z_an_ahjso</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478665791</pqid></control><display><type>article</type><title>Boron-doped Biphasic Hydroxyapatite/β-Tricalcium Phosphate for Bone Tissue Engineering</title><source>SpringerLink Journals - AutoHoldings</source><creator>Pazarçeviren, Ahmet Engin ; Tezcaner, Ayşen ; Keskin, Dilek ; Kolukısa, Serap Topsoy ; Sürdem, Sedat ; Evis, Zafer</creator><creatorcontrib>Pazarçeviren, Ahmet Engin ; Tezcaner, Ayşen ; Keskin, Dilek ; Kolukısa, Serap Topsoy ; Sürdem, Sedat ; Evis, Zafer</creatorcontrib><description>Boron-doped hydroxyapatite/tricalcium phosphates (BHTs) were synthesized to study boron uptake and correlate structural alterations of incremental boron addition (0 to 10 mol%). BHTs with a Ca/P ratio of 1.6 were prepared by a wet precipitation/microwave reflux method, sieved (< 70 μm) and characterized. XRD and FTIR analyses revealed that boron slightly distorted apatite crystal, increased crystallinity (95.78 ± 2.08% for 5BHT) and crystallite size (103.39 ± 23.47 nm for 5BHT) and still, boron addition did not show any further detrimental effects. Total surface area (4.05 ± 0.82 m
2
/g for 10BHT) and mesoporosity (23.90 ± 7.92 μL/g for 10BHT) were expanded as boron content was increased. Moreover, boron addition made grains become smaller (0.21 ± 0.06 μm for 5BHT) and ordered while hardness (10.51 ± 0.86 GPa for 10BHT) increased. Boron incorporation enhanced bioactivity with significantly highest calcium phosphate deposition and protein adsorption (135.29 ± 29.58 μg on 10BHT). In return, boron favored highest alkaline phosphatase activity (4.80 ± 0.40 M
ALP
/ng
DNA
.min), intracellular calcium (23.61 ± 0.68 g/g
DNA
), phosphate (31.84 ± 4.68 g/g
DNA
), and protein (23.70 ± 3.46 g/g
DNA
) storage in 5BHT without cytotoxicity (128 ± 18% viability compared to pure HT). Compared to literature, it can be pointed out that we successfully employed an optimal procedure for production of BHTs and incorporated significantly higher boron content in HT (5.23 mol%). Additionally, results tended to conclude that 5BHT samples (5 mol% boron in HT) demonstrated a very high potential to be used in composite bone tissue constructs.</description><identifier>ISSN: 0163-4984</identifier><identifier>EISSN: 1559-0720</identifier><identifier>DOI: 10.1007/s12011-020-02230-8</identifier><identifier>PMID: 32524334</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alkaline phosphatase ; Apatite ; Biochemistry ; Biocompatibility ; Biological activity ; Biomedical and Life Sciences ; Biomedical materials ; Biotechnology ; Bones ; Boron ; Calcium ; Calcium (intracellular) ; Calcium phosphates ; Correlation analysis ; Crystallites ; Crystals ; Cytotoxicity ; Hydroxyapatite ; Life Sciences ; Nutrition ; Oncology ; Phosphatase ; Phosphates ; Protein adsorption ; Proteins ; Storage ; Tissue ; Tissue engineering ; Toxicity ; Tricalcium phosphate ; Uptake ; Water hardness</subject><ispartof>Biological trace element research, 2021-03, Vol.199 (3), p.968-980</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-8f218418cfd1d15f9f451cfffc0d5bb84eaea7bb1ac93065868a9cbde040bcda3</citedby><cites>FETCH-LOGICAL-c375t-8f218418cfd1d15f9f451cfffc0d5bb84eaea7bb1ac93065868a9cbde040bcda3</cites><orcidid>0000-0002-7518-8162</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12011-020-02230-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12011-020-02230-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32524334$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pazarçeviren, Ahmet Engin</creatorcontrib><creatorcontrib>Tezcaner, Ayşen</creatorcontrib><creatorcontrib>Keskin, Dilek</creatorcontrib><creatorcontrib>Kolukısa, Serap Topsoy</creatorcontrib><creatorcontrib>Sürdem, Sedat</creatorcontrib><creatorcontrib>Evis, Zafer</creatorcontrib><title>Boron-doped Biphasic Hydroxyapatite/β-Tricalcium Phosphate for Bone Tissue Engineering</title><title>Biological trace element research</title><addtitle>Biol Trace Elem Res</addtitle><addtitle>Biol Trace Elem Res</addtitle><description>Boron-doped hydroxyapatite/tricalcium phosphates (BHTs) were synthesized to study boron uptake and correlate structural alterations of incremental boron addition (0 to 10 mol%). BHTs with a Ca/P ratio of 1.6 were prepared by a wet precipitation/microwave reflux method, sieved (< 70 μm) and characterized. XRD and FTIR analyses revealed that boron slightly distorted apatite crystal, increased crystallinity (95.78 ± 2.08% for 5BHT) and crystallite size (103.39 ± 23.47 nm for 5BHT) and still, boron addition did not show any further detrimental effects. Total surface area (4.05 ± 0.82 m
2
/g for 10BHT) and mesoporosity (23.90 ± 7.92 μL/g for 10BHT) were expanded as boron content was increased. Moreover, boron addition made grains become smaller (0.21 ± 0.06 μm for 5BHT) and ordered while hardness (10.51 ± 0.86 GPa for 10BHT) increased. Boron incorporation enhanced bioactivity with significantly highest calcium phosphate deposition and protein adsorption (135.29 ± 29.58 μg on 10BHT). In return, boron favored highest alkaline phosphatase activity (4.80 ± 0.40 M
ALP
/ng
DNA
.min), intracellular calcium (23.61 ± 0.68 g/g
DNA
), phosphate (31.84 ± 4.68 g/g
DNA
), and protein (23.70 ± 3.46 g/g
DNA
) storage in 5BHT without cytotoxicity (128 ± 18% viability compared to pure HT). Compared to literature, it can be pointed out that we successfully employed an optimal procedure for production of BHTs and incorporated significantly higher boron content in HT (5.23 mol%). Additionally, results tended to conclude that 5BHT samples (5 mol% boron in HT) demonstrated a very high potential to be used in composite bone tissue constructs.</description><subject>Alkaline phosphatase</subject><subject>Apatite</subject><subject>Biochemistry</subject><subject>Biocompatibility</subject><subject>Biological activity</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical materials</subject><subject>Biotechnology</subject><subject>Bones</subject><subject>Boron</subject><subject>Calcium</subject><subject>Calcium (intracellular)</subject><subject>Calcium phosphates</subject><subject>Correlation analysis</subject><subject>Crystallites</subject><subject>Crystals</subject><subject>Cytotoxicity</subject><subject>Hydroxyapatite</subject><subject>Life Sciences</subject><subject>Nutrition</subject><subject>Oncology</subject><subject>Phosphatase</subject><subject>Phosphates</subject><subject>Protein adsorption</subject><subject>Proteins</subject><subject>Storage</subject><subject>Tissue</subject><subject>Tissue engineering</subject><subject>Toxicity</subject><subject>Tricalcium phosphate</subject><subject>Uptake</subject><subject>Water hardness</subject><issn>0163-4984</issn><issn>1559-0720</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtuFDEQRS1ERIbAD7BALbFhY1LlR7d7yUSBIEUii4mytNx-JI5m2o3dLWV-iw_hm3CYABILFqXanHurdAh5g_ABAbrTggwQKTCowzhQ9YysUMqeQsfgOVkBtpyKXolj8rKUewDsWM9fkGPOJBOcixW5WaecRurS5F2zjtOdKdE2F3uX08PeTGaOsz_98Z1ucrRma-Oya67uUqnc7JuQcrNOo282sZTFN-fjbRy9z3G8fUWOgtkW__ppn5DrT-ebswt6-fXzl7OPl9TyTs5UBYZKoLLBoUMZ-iAk2hCCBSeHQQlvvOmGAY3tObRStcr0dnAeBAzWGX5C3h96p5y-Lb7MeheL9dutGX1aimYCGcNW9qKi7_5B79OSx_pdpTrVtrLrsVLsQNmcSsk-6CnHncl7jaAfteuDdl2161_ataqht0_Vy7Dz7k_kt-cK8ANQpkc7Pv-9_Z_an_ahjso</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Pazarçeviren, Ahmet Engin</creator><creator>Tezcaner, Ayşen</creator><creator>Keskin, Dilek</creator><creator>Kolukısa, Serap Topsoy</creator><creator>Sürdem, Sedat</creator><creator>Evis, Zafer</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7QP</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7518-8162</orcidid></search><sort><creationdate>20210301</creationdate><title>Boron-doped Biphasic Hydroxyapatite/β-Tricalcium Phosphate for Bone Tissue Engineering</title><author>Pazarçeviren, Ahmet Engin ; Tezcaner, Ayşen ; Keskin, Dilek ; Kolukısa, Serap Topsoy ; Sürdem, Sedat ; Evis, Zafer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-8f218418cfd1d15f9f451cfffc0d5bb84eaea7bb1ac93065868a9cbde040bcda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alkaline phosphatase</topic><topic>Apatite</topic><topic>Biochemistry</topic><topic>Biocompatibility</topic><topic>Biological activity</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical materials</topic><topic>Biotechnology</topic><topic>Bones</topic><topic>Boron</topic><topic>Calcium</topic><topic>Calcium (intracellular)</topic><topic>Calcium phosphates</topic><topic>Correlation analysis</topic><topic>Crystallites</topic><topic>Crystals</topic><topic>Cytotoxicity</topic><topic>Hydroxyapatite</topic><topic>Life Sciences</topic><topic>Nutrition</topic><topic>Oncology</topic><topic>Phosphatase</topic><topic>Phosphates</topic><topic>Protein adsorption</topic><topic>Proteins</topic><topic>Storage</topic><topic>Tissue</topic><topic>Tissue engineering</topic><topic>Toxicity</topic><topic>Tricalcium phosphate</topic><topic>Uptake</topic><topic>Water hardness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pazarçeviren, Ahmet Engin</creatorcontrib><creatorcontrib>Tezcaner, Ayşen</creatorcontrib><creatorcontrib>Keskin, Dilek</creatorcontrib><creatorcontrib>Kolukısa, Serap Topsoy</creatorcontrib><creatorcontrib>Sürdem, Sedat</creatorcontrib><creatorcontrib>Evis, Zafer</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biological trace element research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pazarçeviren, Ahmet Engin</au><au>Tezcaner, Ayşen</au><au>Keskin, Dilek</au><au>Kolukısa, Serap Topsoy</au><au>Sürdem, Sedat</au><au>Evis, Zafer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boron-doped Biphasic Hydroxyapatite/β-Tricalcium Phosphate for Bone Tissue Engineering</atitle><jtitle>Biological trace element research</jtitle><stitle>Biol Trace Elem Res</stitle><addtitle>Biol Trace Elem Res</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>199</volume><issue>3</issue><spage>968</spage><epage>980</epage><pages>968-980</pages><issn>0163-4984</issn><eissn>1559-0720</eissn><abstract>Boron-doped hydroxyapatite/tricalcium phosphates (BHTs) were synthesized to study boron uptake and correlate structural alterations of incremental boron addition (0 to 10 mol%). BHTs with a Ca/P ratio of 1.6 were prepared by a wet precipitation/microwave reflux method, sieved (< 70 μm) and characterized. XRD and FTIR analyses revealed that boron slightly distorted apatite crystal, increased crystallinity (95.78 ± 2.08% for 5BHT) and crystallite size (103.39 ± 23.47 nm for 5BHT) and still, boron addition did not show any further detrimental effects. Total surface area (4.05 ± 0.82 m
2
/g for 10BHT) and mesoporosity (23.90 ± 7.92 μL/g for 10BHT) were expanded as boron content was increased. Moreover, boron addition made grains become smaller (0.21 ± 0.06 μm for 5BHT) and ordered while hardness (10.51 ± 0.86 GPa for 10BHT) increased. Boron incorporation enhanced bioactivity with significantly highest calcium phosphate deposition and protein adsorption (135.29 ± 29.58 μg on 10BHT). In return, boron favored highest alkaline phosphatase activity (4.80 ± 0.40 M
ALP
/ng
DNA
.min), intracellular calcium (23.61 ± 0.68 g/g
DNA
), phosphate (31.84 ± 4.68 g/g
DNA
), and protein (23.70 ± 3.46 g/g
DNA
) storage in 5BHT without cytotoxicity (128 ± 18% viability compared to pure HT). Compared to literature, it can be pointed out that we successfully employed an optimal procedure for production of BHTs and incorporated significantly higher boron content in HT (5.23 mol%). Additionally, results tended to conclude that 5BHT samples (5 mol% boron in HT) demonstrated a very high potential to be used in composite bone tissue constructs.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>32524334</pmid><doi>10.1007/s12011-020-02230-8</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7518-8162</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0163-4984 |
ispartof | Biological trace element research, 2021-03, Vol.199 (3), p.968-980 |
issn | 0163-4984 1559-0720 |
language | eng |
recordid | cdi_proquest_miscellaneous_2412216594 |
source | SpringerLink Journals - AutoHoldings |
subjects | Alkaline phosphatase Apatite Biochemistry Biocompatibility Biological activity Biomedical and Life Sciences Biomedical materials Biotechnology Bones Boron Calcium Calcium (intracellular) Calcium phosphates Correlation analysis Crystallites Crystals Cytotoxicity Hydroxyapatite Life Sciences Nutrition Oncology Phosphatase Phosphates Protein adsorption Proteins Storage Tissue Tissue engineering Toxicity Tricalcium phosphate Uptake Water hardness |
title | Boron-doped Biphasic Hydroxyapatite/β-Tricalcium Phosphate for Bone Tissue Engineering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A24%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boron-doped%20Biphasic%20Hydroxyapatite/%CE%B2-Tricalcium%20Phosphate%20for%20Bone%20Tissue%20Engineering&rft.jtitle=Biological%20trace%20element%20research&rft.au=Pazar%C3%A7eviren,%20Ahmet%20Engin&rft.date=2021-03-01&rft.volume=199&rft.issue=3&rft.spage=968&rft.epage=980&rft.pages=968-980&rft.issn=0163-4984&rft.eissn=1559-0720&rft_id=info:doi/10.1007/s12011-020-02230-8&rft_dat=%3Cproquest_cross%3E2412216594%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478665791&rft_id=info:pmid/32524334&rfr_iscdi=true |