Boron-doped Biphasic Hydroxyapatite/β-Tricalcium Phosphate for Bone Tissue Engineering

Boron-doped hydroxyapatite/tricalcium phosphates (BHTs) were synthesized to study boron uptake and correlate structural alterations of incremental boron addition (0 to 10 mol%). BHTs with a Ca/P ratio of 1.6 were prepared by a wet precipitation/microwave reflux method, sieved (< 70 μm) and charac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological trace element research 2021-03, Vol.199 (3), p.968-980
Hauptverfasser: Pazarçeviren, Ahmet Engin, Tezcaner, Ayşen, Keskin, Dilek, Kolukısa, Serap Topsoy, Sürdem, Sedat, Evis, Zafer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 980
container_issue 3
container_start_page 968
container_title Biological trace element research
container_volume 199
creator Pazarçeviren, Ahmet Engin
Tezcaner, Ayşen
Keskin, Dilek
Kolukısa, Serap Topsoy
Sürdem, Sedat
Evis, Zafer
description Boron-doped hydroxyapatite/tricalcium phosphates (BHTs) were synthesized to study boron uptake and correlate structural alterations of incremental boron addition (0 to 10 mol%). BHTs with a Ca/P ratio of 1.6 were prepared by a wet precipitation/microwave reflux method, sieved (< 70 μm) and characterized. XRD and FTIR analyses revealed that boron slightly distorted apatite crystal, increased crystallinity (95.78 ± 2.08% for 5BHT) and crystallite size (103.39 ± 23.47 nm for 5BHT) and still, boron addition did not show any further detrimental effects. Total surface area (4.05 ± 0.82 m 2 /g for 10BHT) and mesoporosity (23.90 ± 7.92 μL/g for 10BHT) were expanded as boron content was increased. Moreover, boron addition made grains become smaller (0.21 ± 0.06 μm for 5BHT) and ordered while hardness (10.51 ± 0.86 GPa for 10BHT) increased. Boron incorporation enhanced bioactivity with significantly highest calcium phosphate deposition and protein adsorption (135.29 ± 29.58 μg on 10BHT). In return, boron favored highest alkaline phosphatase activity (4.80 ± 0.40 M ALP /ng DNA .min), intracellular calcium (23.61 ± 0.68 g/g DNA ), phosphate (31.84 ± 4.68 g/g DNA ), and protein (23.70 ± 3.46 g/g DNA ) storage in 5BHT without cytotoxicity (128 ± 18% viability compared to pure HT). Compared to literature, it can be pointed out that we successfully employed an optimal procedure for production of BHTs and incorporated significantly higher boron content in HT (5.23 mol%). Additionally, results tended to conclude that 5BHT samples (5 mol% boron in HT) demonstrated a very high potential to be used in composite bone tissue constructs.
doi_str_mv 10.1007/s12011-020-02230-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2412216594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2412216594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-8f218418cfd1d15f9f451cfffc0d5bb84eaea7bb1ac93065868a9cbde040bcda3</originalsourceid><addsrcrecordid>eNp9kMtuFDEQRS1ERIbAD7BALbFhY1LlR7d7yUSBIEUii4mytNx-JI5m2o3dLWV-iw_hm3CYABILFqXanHurdAh5g_ABAbrTggwQKTCowzhQ9YysUMqeQsfgOVkBtpyKXolj8rKUewDsWM9fkGPOJBOcixW5WaecRurS5F2zjtOdKdE2F3uX08PeTGaOsz_98Z1ucrRma-Oya67uUqnc7JuQcrNOo282sZTFN-fjbRy9z3G8fUWOgtkW__ppn5DrT-ebswt6-fXzl7OPl9TyTs5UBYZKoLLBoUMZ-iAk2hCCBSeHQQlvvOmGAY3tObRStcr0dnAeBAzWGX5C3h96p5y-Lb7MeheL9dutGX1aimYCGcNW9qKi7_5B79OSx_pdpTrVtrLrsVLsQNmcSsk-6CnHncl7jaAfteuDdl2161_ataqht0_Vy7Dz7k_kt-cK8ANQpkc7Pv-9_Z_an_ahjso</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478665791</pqid></control><display><type>article</type><title>Boron-doped Biphasic Hydroxyapatite/β-Tricalcium Phosphate for Bone Tissue Engineering</title><source>SpringerLink Journals - AutoHoldings</source><creator>Pazarçeviren, Ahmet Engin ; Tezcaner, Ayşen ; Keskin, Dilek ; Kolukısa, Serap Topsoy ; Sürdem, Sedat ; Evis, Zafer</creator><creatorcontrib>Pazarçeviren, Ahmet Engin ; Tezcaner, Ayşen ; Keskin, Dilek ; Kolukısa, Serap Topsoy ; Sürdem, Sedat ; Evis, Zafer</creatorcontrib><description>Boron-doped hydroxyapatite/tricalcium phosphates (BHTs) were synthesized to study boron uptake and correlate structural alterations of incremental boron addition (0 to 10 mol%). BHTs with a Ca/P ratio of 1.6 were prepared by a wet precipitation/microwave reflux method, sieved (&lt; 70 μm) and characterized. XRD and FTIR analyses revealed that boron slightly distorted apatite crystal, increased crystallinity (95.78 ± 2.08% for 5BHT) and crystallite size (103.39 ± 23.47 nm for 5BHT) and still, boron addition did not show any further detrimental effects. Total surface area (4.05 ± 0.82 m 2 /g for 10BHT) and mesoporosity (23.90 ± 7.92 μL/g for 10BHT) were expanded as boron content was increased. Moreover, boron addition made grains become smaller (0.21 ± 0.06 μm for 5BHT) and ordered while hardness (10.51 ± 0.86 GPa for 10BHT) increased. Boron incorporation enhanced bioactivity with significantly highest calcium phosphate deposition and protein adsorption (135.29 ± 29.58 μg on 10BHT). In return, boron favored highest alkaline phosphatase activity (4.80 ± 0.40 M ALP /ng DNA .min), intracellular calcium (23.61 ± 0.68 g/g DNA ), phosphate (31.84 ± 4.68 g/g DNA ), and protein (23.70 ± 3.46 g/g DNA ) storage in 5BHT without cytotoxicity (128 ± 18% viability compared to pure HT). Compared to literature, it can be pointed out that we successfully employed an optimal procedure for production of BHTs and incorporated significantly higher boron content in HT (5.23 mol%). Additionally, results tended to conclude that 5BHT samples (5 mol% boron in HT) demonstrated a very high potential to be used in composite bone tissue constructs.</description><identifier>ISSN: 0163-4984</identifier><identifier>EISSN: 1559-0720</identifier><identifier>DOI: 10.1007/s12011-020-02230-8</identifier><identifier>PMID: 32524334</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alkaline phosphatase ; Apatite ; Biochemistry ; Biocompatibility ; Biological activity ; Biomedical and Life Sciences ; Biomedical materials ; Biotechnology ; Bones ; Boron ; Calcium ; Calcium (intracellular) ; Calcium phosphates ; Correlation analysis ; Crystallites ; Crystals ; Cytotoxicity ; Hydroxyapatite ; Life Sciences ; Nutrition ; Oncology ; Phosphatase ; Phosphates ; Protein adsorption ; Proteins ; Storage ; Tissue ; Tissue engineering ; Toxicity ; Tricalcium phosphate ; Uptake ; Water hardness</subject><ispartof>Biological trace element research, 2021-03, Vol.199 (3), p.968-980</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-8f218418cfd1d15f9f451cfffc0d5bb84eaea7bb1ac93065868a9cbde040bcda3</citedby><cites>FETCH-LOGICAL-c375t-8f218418cfd1d15f9f451cfffc0d5bb84eaea7bb1ac93065868a9cbde040bcda3</cites><orcidid>0000-0002-7518-8162</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12011-020-02230-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12011-020-02230-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32524334$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pazarçeviren, Ahmet Engin</creatorcontrib><creatorcontrib>Tezcaner, Ayşen</creatorcontrib><creatorcontrib>Keskin, Dilek</creatorcontrib><creatorcontrib>Kolukısa, Serap Topsoy</creatorcontrib><creatorcontrib>Sürdem, Sedat</creatorcontrib><creatorcontrib>Evis, Zafer</creatorcontrib><title>Boron-doped Biphasic Hydroxyapatite/β-Tricalcium Phosphate for Bone Tissue Engineering</title><title>Biological trace element research</title><addtitle>Biol Trace Elem Res</addtitle><addtitle>Biol Trace Elem Res</addtitle><description>Boron-doped hydroxyapatite/tricalcium phosphates (BHTs) were synthesized to study boron uptake and correlate structural alterations of incremental boron addition (0 to 10 mol%). BHTs with a Ca/P ratio of 1.6 were prepared by a wet precipitation/microwave reflux method, sieved (&lt; 70 μm) and characterized. XRD and FTIR analyses revealed that boron slightly distorted apatite crystal, increased crystallinity (95.78 ± 2.08% for 5BHT) and crystallite size (103.39 ± 23.47 nm for 5BHT) and still, boron addition did not show any further detrimental effects. Total surface area (4.05 ± 0.82 m 2 /g for 10BHT) and mesoporosity (23.90 ± 7.92 μL/g for 10BHT) were expanded as boron content was increased. Moreover, boron addition made grains become smaller (0.21 ± 0.06 μm for 5BHT) and ordered while hardness (10.51 ± 0.86 GPa for 10BHT) increased. Boron incorporation enhanced bioactivity with significantly highest calcium phosphate deposition and protein adsorption (135.29 ± 29.58 μg on 10BHT). In return, boron favored highest alkaline phosphatase activity (4.80 ± 0.40 M ALP /ng DNA .min), intracellular calcium (23.61 ± 0.68 g/g DNA ), phosphate (31.84 ± 4.68 g/g DNA ), and protein (23.70 ± 3.46 g/g DNA ) storage in 5BHT without cytotoxicity (128 ± 18% viability compared to pure HT). Compared to literature, it can be pointed out that we successfully employed an optimal procedure for production of BHTs and incorporated significantly higher boron content in HT (5.23 mol%). Additionally, results tended to conclude that 5BHT samples (5 mol% boron in HT) demonstrated a very high potential to be used in composite bone tissue constructs.</description><subject>Alkaline phosphatase</subject><subject>Apatite</subject><subject>Biochemistry</subject><subject>Biocompatibility</subject><subject>Biological activity</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical materials</subject><subject>Biotechnology</subject><subject>Bones</subject><subject>Boron</subject><subject>Calcium</subject><subject>Calcium (intracellular)</subject><subject>Calcium phosphates</subject><subject>Correlation analysis</subject><subject>Crystallites</subject><subject>Crystals</subject><subject>Cytotoxicity</subject><subject>Hydroxyapatite</subject><subject>Life Sciences</subject><subject>Nutrition</subject><subject>Oncology</subject><subject>Phosphatase</subject><subject>Phosphates</subject><subject>Protein adsorption</subject><subject>Proteins</subject><subject>Storage</subject><subject>Tissue</subject><subject>Tissue engineering</subject><subject>Toxicity</subject><subject>Tricalcium phosphate</subject><subject>Uptake</subject><subject>Water hardness</subject><issn>0163-4984</issn><issn>1559-0720</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtuFDEQRS1ERIbAD7BALbFhY1LlR7d7yUSBIEUii4mytNx-JI5m2o3dLWV-iw_hm3CYABILFqXanHurdAh5g_ABAbrTggwQKTCowzhQ9YysUMqeQsfgOVkBtpyKXolj8rKUewDsWM9fkGPOJBOcixW5WaecRurS5F2zjtOdKdE2F3uX08PeTGaOsz_98Z1ucrRma-Oya67uUqnc7JuQcrNOo282sZTFN-fjbRy9z3G8fUWOgtkW__ppn5DrT-ebswt6-fXzl7OPl9TyTs5UBYZKoLLBoUMZ-iAk2hCCBSeHQQlvvOmGAY3tObRStcr0dnAeBAzWGX5C3h96p5y-Lb7MeheL9dutGX1aimYCGcNW9qKi7_5B79OSx_pdpTrVtrLrsVLsQNmcSsk-6CnHncl7jaAfteuDdl2161_ataqht0_Vy7Dz7k_kt-cK8ANQpkc7Pv-9_Z_an_ahjso</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Pazarçeviren, Ahmet Engin</creator><creator>Tezcaner, Ayşen</creator><creator>Keskin, Dilek</creator><creator>Kolukısa, Serap Topsoy</creator><creator>Sürdem, Sedat</creator><creator>Evis, Zafer</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7QP</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7518-8162</orcidid></search><sort><creationdate>20210301</creationdate><title>Boron-doped Biphasic Hydroxyapatite/β-Tricalcium Phosphate for Bone Tissue Engineering</title><author>Pazarçeviren, Ahmet Engin ; Tezcaner, Ayşen ; Keskin, Dilek ; Kolukısa, Serap Topsoy ; Sürdem, Sedat ; Evis, Zafer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-8f218418cfd1d15f9f451cfffc0d5bb84eaea7bb1ac93065868a9cbde040bcda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alkaline phosphatase</topic><topic>Apatite</topic><topic>Biochemistry</topic><topic>Biocompatibility</topic><topic>Biological activity</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical materials</topic><topic>Biotechnology</topic><topic>Bones</topic><topic>Boron</topic><topic>Calcium</topic><topic>Calcium (intracellular)</topic><topic>Calcium phosphates</topic><topic>Correlation analysis</topic><topic>Crystallites</topic><topic>Crystals</topic><topic>Cytotoxicity</topic><topic>Hydroxyapatite</topic><topic>Life Sciences</topic><topic>Nutrition</topic><topic>Oncology</topic><topic>Phosphatase</topic><topic>Phosphates</topic><topic>Protein adsorption</topic><topic>Proteins</topic><topic>Storage</topic><topic>Tissue</topic><topic>Tissue engineering</topic><topic>Toxicity</topic><topic>Tricalcium phosphate</topic><topic>Uptake</topic><topic>Water hardness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pazarçeviren, Ahmet Engin</creatorcontrib><creatorcontrib>Tezcaner, Ayşen</creatorcontrib><creatorcontrib>Keskin, Dilek</creatorcontrib><creatorcontrib>Kolukısa, Serap Topsoy</creatorcontrib><creatorcontrib>Sürdem, Sedat</creatorcontrib><creatorcontrib>Evis, Zafer</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biological trace element research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pazarçeviren, Ahmet Engin</au><au>Tezcaner, Ayşen</au><au>Keskin, Dilek</au><au>Kolukısa, Serap Topsoy</au><au>Sürdem, Sedat</au><au>Evis, Zafer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boron-doped Biphasic Hydroxyapatite/β-Tricalcium Phosphate for Bone Tissue Engineering</atitle><jtitle>Biological trace element research</jtitle><stitle>Biol Trace Elem Res</stitle><addtitle>Biol Trace Elem Res</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>199</volume><issue>3</issue><spage>968</spage><epage>980</epage><pages>968-980</pages><issn>0163-4984</issn><eissn>1559-0720</eissn><abstract>Boron-doped hydroxyapatite/tricalcium phosphates (BHTs) were synthesized to study boron uptake and correlate structural alterations of incremental boron addition (0 to 10 mol%). BHTs with a Ca/P ratio of 1.6 were prepared by a wet precipitation/microwave reflux method, sieved (&lt; 70 μm) and characterized. XRD and FTIR analyses revealed that boron slightly distorted apatite crystal, increased crystallinity (95.78 ± 2.08% for 5BHT) and crystallite size (103.39 ± 23.47 nm for 5BHT) and still, boron addition did not show any further detrimental effects. Total surface area (4.05 ± 0.82 m 2 /g for 10BHT) and mesoporosity (23.90 ± 7.92 μL/g for 10BHT) were expanded as boron content was increased. Moreover, boron addition made grains become smaller (0.21 ± 0.06 μm for 5BHT) and ordered while hardness (10.51 ± 0.86 GPa for 10BHT) increased. Boron incorporation enhanced bioactivity with significantly highest calcium phosphate deposition and protein adsorption (135.29 ± 29.58 μg on 10BHT). In return, boron favored highest alkaline phosphatase activity (4.80 ± 0.40 M ALP /ng DNA .min), intracellular calcium (23.61 ± 0.68 g/g DNA ), phosphate (31.84 ± 4.68 g/g DNA ), and protein (23.70 ± 3.46 g/g DNA ) storage in 5BHT without cytotoxicity (128 ± 18% viability compared to pure HT). Compared to literature, it can be pointed out that we successfully employed an optimal procedure for production of BHTs and incorporated significantly higher boron content in HT (5.23 mol%). Additionally, results tended to conclude that 5BHT samples (5 mol% boron in HT) demonstrated a very high potential to be used in composite bone tissue constructs.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>32524334</pmid><doi>10.1007/s12011-020-02230-8</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7518-8162</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0163-4984
ispartof Biological trace element research, 2021-03, Vol.199 (3), p.968-980
issn 0163-4984
1559-0720
language eng
recordid cdi_proquest_miscellaneous_2412216594
source SpringerLink Journals - AutoHoldings
subjects Alkaline phosphatase
Apatite
Biochemistry
Biocompatibility
Biological activity
Biomedical and Life Sciences
Biomedical materials
Biotechnology
Bones
Boron
Calcium
Calcium (intracellular)
Calcium phosphates
Correlation analysis
Crystallites
Crystals
Cytotoxicity
Hydroxyapatite
Life Sciences
Nutrition
Oncology
Phosphatase
Phosphates
Protein adsorption
Proteins
Storage
Tissue
Tissue engineering
Toxicity
Tricalcium phosphate
Uptake
Water hardness
title Boron-doped Biphasic Hydroxyapatite/β-Tricalcium Phosphate for Bone Tissue Engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A24%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boron-doped%20Biphasic%20Hydroxyapatite/%CE%B2-Tricalcium%20Phosphate%20for%20Bone%20Tissue%20Engineering&rft.jtitle=Biological%20trace%20element%20research&rft.au=Pazar%C3%A7eviren,%20Ahmet%20Engin&rft.date=2021-03-01&rft.volume=199&rft.issue=3&rft.spage=968&rft.epage=980&rft.pages=968-980&rft.issn=0163-4984&rft.eissn=1559-0720&rft_id=info:doi/10.1007/s12011-020-02230-8&rft_dat=%3Cproquest_cross%3E2412216594%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478665791&rft_id=info:pmid/32524334&rfr_iscdi=true