Engineering Isolated Mn–N2C2 Atomic Interface Sites for Efficient Bifunctional Oxygen Reduction and Evolution Reaction

Oxygen-involved electrochemical reactions are crucial for plenty of energy conversion techniques. Herein, we rationally designed a carbon-based Mn–N2C2 bifunctional electrocatalyst. It exhibits a half-wave potential of 0.915 V versus reversible hydrogen electrode for oxygen reduction reaction (ORR),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2020-07, Vol.20 (7), p.5443-5450
Hauptverfasser: Shang, Huishan, Sun, Wenming, Sui, Rui, Pei, Jiajing, Zheng, Lirong, Dong, Juncai, Jiang, Zhuoli, Zhou, Danni, Zhuang, Zhongbin, Chen, Wenxing, Zhang, Jiatao, Wang, Dingsheng, Li, Yadong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5450
container_issue 7
container_start_page 5443
container_title Nano letters
container_volume 20
creator Shang, Huishan
Sun, Wenming
Sui, Rui
Pei, Jiajing
Zheng, Lirong
Dong, Juncai
Jiang, Zhuoli
Zhou, Danni
Zhuang, Zhongbin
Chen, Wenxing
Zhang, Jiatao
Wang, Dingsheng
Li, Yadong
description Oxygen-involved electrochemical reactions are crucial for plenty of energy conversion techniques. Herein, we rationally designed a carbon-based Mn–N2C2 bifunctional electrocatalyst. It exhibits a half-wave potential of 0.915 V versus reversible hydrogen electrode for oxygen reduction reaction (ORR), and the overpotential is 350 mV at 10 mA cm–2 during oxygen evolution reaction (OER) in alkaline condition. Furthermore, by means of operando X-ray absorption fine structure measurements, we reveal that the bond-length-extended Mn2+–N2C2 atomic interface sites act as active centers during the ORR process, while the bond-length-shortened high-valence Mn4+–N2C2 moieties serve as the catalytic sites for OER, which is consistent with the density functional theory results. The atomic and electronic synergistic effects for the isolated Mn sites and the carbon support play a critical role to promote the oxygen-involved catalytic performance, by regulating the reaction free energy of intermediate adsorption. Our results give an atomic interface strategy for nonprecious bifunctional single-atom electrocatalysts.
doi_str_mv 10.1021/acs.nanolett.0c01925
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2411592752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2411592752</sourcerecordid><originalsourceid>FETCH-LOGICAL-a225t-5c573e3dd1a9d3150838fa788e5f99d3db1a1deadc26ad66bfc7f2ece95631923</originalsourceid><addsrcrecordid>eNo9kM1OAjEURhujiYi-gYsu3Qz2h85Ml0hQSVAS1PWktLekZGh12jG48x18Q5_EAdHV_e7Jl5vcg9AlJQNKGL1WOg688qGGlAZEEyqZOEI9KjjJcinZ8X8uh6foLMY1IURyQXpoO_Er5wEa51d4GkOtEhj84L8_vx7ZmOFRChun8dQnaKzSgJ9cgohtaPDEWqcd-IRvnG29Ti54VeP59mMFHi_AtHuElTd48h7qdr8tQO3xOTqxqo5wcZh99HI7eR7fZ7P53XQ8mmWKMZEyoUXBgRtDlTScClLy0qqiLEFY2RGzpIoaUEazXJk8X1pdWAYapMh554H30dXv3dcmvLUQU7VxUUNdKw-hjRUbUiokK8SuSn6rnc9qHdqmeydWlFQ7ydUO_kmuDpL5DwVhdnY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2411592752</pqid></control><display><type>article</type><title>Engineering Isolated Mn–N2C2 Atomic Interface Sites for Efficient Bifunctional Oxygen Reduction and Evolution Reaction</title><source>American Chemical Society Journals</source><creator>Shang, Huishan ; Sun, Wenming ; Sui, Rui ; Pei, Jiajing ; Zheng, Lirong ; Dong, Juncai ; Jiang, Zhuoli ; Zhou, Danni ; Zhuang, Zhongbin ; Chen, Wenxing ; Zhang, Jiatao ; Wang, Dingsheng ; Li, Yadong</creator><creatorcontrib>Shang, Huishan ; Sun, Wenming ; Sui, Rui ; Pei, Jiajing ; Zheng, Lirong ; Dong, Juncai ; Jiang, Zhuoli ; Zhou, Danni ; Zhuang, Zhongbin ; Chen, Wenxing ; Zhang, Jiatao ; Wang, Dingsheng ; Li, Yadong</creatorcontrib><description>Oxygen-involved electrochemical reactions are crucial for plenty of energy conversion techniques. Herein, we rationally designed a carbon-based Mn–N2C2 bifunctional electrocatalyst. It exhibits a half-wave potential of 0.915 V versus reversible hydrogen electrode for oxygen reduction reaction (ORR), and the overpotential is 350 mV at 10 mA cm–2 during oxygen evolution reaction (OER) in alkaline condition. Furthermore, by means of operando X-ray absorption fine structure measurements, we reveal that the bond-length-extended Mn2+–N2C2 atomic interface sites act as active centers during the ORR process, while the bond-length-shortened high-valence Mn4+–N2C2 moieties serve as the catalytic sites for OER, which is consistent with the density functional theory results. The atomic and electronic synergistic effects for the isolated Mn sites and the carbon support play a critical role to promote the oxygen-involved catalytic performance, by regulating the reaction free energy of intermediate adsorption. Our results give an atomic interface strategy for nonprecious bifunctional single-atom electrocatalysts.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.0c01925</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Nano letters, 2020-07, Vol.20 (7), p.5443-5450</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7414-4902 ; 0000-0001-8860-093X ; 0000-0003-1544-1127 ; 0000-0003-0074-7633 ; 0000-0001-7187-1266</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.0c01925$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.0c01925$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Shang, Huishan</creatorcontrib><creatorcontrib>Sun, Wenming</creatorcontrib><creatorcontrib>Sui, Rui</creatorcontrib><creatorcontrib>Pei, Jiajing</creatorcontrib><creatorcontrib>Zheng, Lirong</creatorcontrib><creatorcontrib>Dong, Juncai</creatorcontrib><creatorcontrib>Jiang, Zhuoli</creatorcontrib><creatorcontrib>Zhou, Danni</creatorcontrib><creatorcontrib>Zhuang, Zhongbin</creatorcontrib><creatorcontrib>Chen, Wenxing</creatorcontrib><creatorcontrib>Zhang, Jiatao</creatorcontrib><creatorcontrib>Wang, Dingsheng</creatorcontrib><creatorcontrib>Li, Yadong</creatorcontrib><title>Engineering Isolated Mn–N2C2 Atomic Interface Sites for Efficient Bifunctional Oxygen Reduction and Evolution Reaction</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Oxygen-involved electrochemical reactions are crucial for plenty of energy conversion techniques. Herein, we rationally designed a carbon-based Mn–N2C2 bifunctional electrocatalyst. It exhibits a half-wave potential of 0.915 V versus reversible hydrogen electrode for oxygen reduction reaction (ORR), and the overpotential is 350 mV at 10 mA cm–2 during oxygen evolution reaction (OER) in alkaline condition. Furthermore, by means of operando X-ray absorption fine structure measurements, we reveal that the bond-length-extended Mn2+–N2C2 atomic interface sites act as active centers during the ORR process, while the bond-length-shortened high-valence Mn4+–N2C2 moieties serve as the catalytic sites for OER, which is consistent with the density functional theory results. The atomic and electronic synergistic effects for the isolated Mn sites and the carbon support play a critical role to promote the oxygen-involved catalytic performance, by regulating the reaction free energy of intermediate adsorption. Our results give an atomic interface strategy for nonprecious bifunctional single-atom electrocatalysts.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OAjEURhujiYi-gYsu3Qz2h85Ml0hQSVAS1PWktLekZGh12jG48x18Q5_EAdHV_e7Jl5vcg9AlJQNKGL1WOg688qGGlAZEEyqZOEI9KjjJcinZ8X8uh6foLMY1IURyQXpoO_Er5wEa51d4GkOtEhj84L8_vx7ZmOFRChun8dQnaKzSgJ9cgohtaPDEWqcd-IRvnG29Ti54VeP59mMFHi_AtHuElTd48h7qdr8tQO3xOTqxqo5wcZh99HI7eR7fZ7P53XQ8mmWKMZEyoUXBgRtDlTScClLy0qqiLEFY2RGzpIoaUEazXJk8X1pdWAYapMh554H30dXv3dcmvLUQU7VxUUNdKw-hjRUbUiokK8SuSn6rnc9qHdqmeydWlFQ7ydUO_kmuDpL5DwVhdnY</recordid><startdate>20200708</startdate><enddate>20200708</enddate><creator>Shang, Huishan</creator><creator>Sun, Wenming</creator><creator>Sui, Rui</creator><creator>Pei, Jiajing</creator><creator>Zheng, Lirong</creator><creator>Dong, Juncai</creator><creator>Jiang, Zhuoli</creator><creator>Zhou, Danni</creator><creator>Zhuang, Zhongbin</creator><creator>Chen, Wenxing</creator><creator>Zhang, Jiatao</creator><creator>Wang, Dingsheng</creator><creator>Li, Yadong</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7414-4902</orcidid><orcidid>https://orcid.org/0000-0001-8860-093X</orcidid><orcidid>https://orcid.org/0000-0003-1544-1127</orcidid><orcidid>https://orcid.org/0000-0003-0074-7633</orcidid><orcidid>https://orcid.org/0000-0001-7187-1266</orcidid></search><sort><creationdate>20200708</creationdate><title>Engineering Isolated Mn–N2C2 Atomic Interface Sites for Efficient Bifunctional Oxygen Reduction and Evolution Reaction</title><author>Shang, Huishan ; Sun, Wenming ; Sui, Rui ; Pei, Jiajing ; Zheng, Lirong ; Dong, Juncai ; Jiang, Zhuoli ; Zhou, Danni ; Zhuang, Zhongbin ; Chen, Wenxing ; Zhang, Jiatao ; Wang, Dingsheng ; Li, Yadong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a225t-5c573e3dd1a9d3150838fa788e5f99d3db1a1deadc26ad66bfc7f2ece95631923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shang, Huishan</creatorcontrib><creatorcontrib>Sun, Wenming</creatorcontrib><creatorcontrib>Sui, Rui</creatorcontrib><creatorcontrib>Pei, Jiajing</creatorcontrib><creatorcontrib>Zheng, Lirong</creatorcontrib><creatorcontrib>Dong, Juncai</creatorcontrib><creatorcontrib>Jiang, Zhuoli</creatorcontrib><creatorcontrib>Zhou, Danni</creatorcontrib><creatorcontrib>Zhuang, Zhongbin</creatorcontrib><creatorcontrib>Chen, Wenxing</creatorcontrib><creatorcontrib>Zhang, Jiatao</creatorcontrib><creatorcontrib>Wang, Dingsheng</creatorcontrib><creatorcontrib>Li, Yadong</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shang, Huishan</au><au>Sun, Wenming</au><au>Sui, Rui</au><au>Pei, Jiajing</au><au>Zheng, Lirong</au><au>Dong, Juncai</au><au>Jiang, Zhuoli</au><au>Zhou, Danni</au><au>Zhuang, Zhongbin</au><au>Chen, Wenxing</au><au>Zhang, Jiatao</au><au>Wang, Dingsheng</au><au>Li, Yadong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Isolated Mn–N2C2 Atomic Interface Sites for Efficient Bifunctional Oxygen Reduction and Evolution Reaction</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2020-07-08</date><risdate>2020</risdate><volume>20</volume><issue>7</issue><spage>5443</spage><epage>5450</epage><pages>5443-5450</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Oxygen-involved electrochemical reactions are crucial for plenty of energy conversion techniques. Herein, we rationally designed a carbon-based Mn–N2C2 bifunctional electrocatalyst. It exhibits a half-wave potential of 0.915 V versus reversible hydrogen electrode for oxygen reduction reaction (ORR), and the overpotential is 350 mV at 10 mA cm–2 during oxygen evolution reaction (OER) in alkaline condition. Furthermore, by means of operando X-ray absorption fine structure measurements, we reveal that the bond-length-extended Mn2+–N2C2 atomic interface sites act as active centers during the ORR process, while the bond-length-shortened high-valence Mn4+–N2C2 moieties serve as the catalytic sites for OER, which is consistent with the density functional theory results. The atomic and electronic synergistic effects for the isolated Mn sites and the carbon support play a critical role to promote the oxygen-involved catalytic performance, by regulating the reaction free energy of intermediate adsorption. Our results give an atomic interface strategy for nonprecious bifunctional single-atom electrocatalysts.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.nanolett.0c01925</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7414-4902</orcidid><orcidid>https://orcid.org/0000-0001-8860-093X</orcidid><orcidid>https://orcid.org/0000-0003-1544-1127</orcidid><orcidid>https://orcid.org/0000-0003-0074-7633</orcidid><orcidid>https://orcid.org/0000-0001-7187-1266</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2020-07, Vol.20 (7), p.5443-5450
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_2411592752
source American Chemical Society Journals
title Engineering Isolated Mn–N2C2 Atomic Interface Sites for Efficient Bifunctional Oxygen Reduction and Evolution Reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A18%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Isolated%20Mn%E2%80%93N2C2%20Atomic%20Interface%20Sites%20for%20Efficient%20Bifunctional%20Oxygen%20Reduction%20and%20Evolution%20Reaction&rft.jtitle=Nano%20letters&rft.au=Shang,%20Huishan&rft.date=2020-07-08&rft.volume=20&rft.issue=7&rft.spage=5443&rft.epage=5450&rft.pages=5443-5450&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.0c01925&rft_dat=%3Cproquest_acs_j%3E2411592752%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2411592752&rft_id=info:pmid/&rfr_iscdi=true