Identification of novel seed longevity genes related to oxidative stress and seed coat by genome‐wide association studies and reverse genetics

Seed longevity is a polygenic trait of relevance for agriculture and for understanding the effect of environment on the ageing of biological systems. In order to identify novel longevity genes, we have phenotyped the natural variation of 270 ecotypes of the model plant, Arabidopsis thaliana, for nat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant, cell and environment cell and environment, 2020-10, Vol.43 (10), p.2523-2539
Hauptverfasser: Renard, Joan, Niñoles, Regina, Martínez‐Almonacid, Irene, Gayubas, Beatriz, Mateos‐Fernández, Rubén, Bissoli, Gaetano, Bueso, Eduardo, Serrano, Ramón, Gadea, José
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2539
container_issue 10
container_start_page 2523
container_title Plant, cell and environment
container_volume 43
creator Renard, Joan
Niñoles, Regina
Martínez‐Almonacid, Irene
Gayubas, Beatriz
Mateos‐Fernández, Rubén
Bissoli, Gaetano
Bueso, Eduardo
Serrano, Ramón
Gadea, José
description Seed longevity is a polygenic trait of relevance for agriculture and for understanding the effect of environment on the ageing of biological systems. In order to identify novel longevity genes, we have phenotyped the natural variation of 270 ecotypes of the model plant, Arabidopsis thaliana, for natural ageing and for three accelerated ageing methods. Genome‐wide analysis, using publicly available single‐nucleotide polymorphisms (SNPs) data sets, identified multiple genomic regions associated with variation in seed longevity. Reverse genetics of 20 candidate genes in Columbia ecotype resulted in seven genes positive for seed longevity (PSAD1, SSLEA, SSTPR, DHAR1, CYP86A8, MYB47 and SPCH) and five negative ones (RBOHD, RBOHE, RBOHF, KNAT7 and SEP3). In this uniform genetic background, natural and accelerated ageing methods provided similar results for seed‐longevity in knock‐out mutants. The NADPH oxidases (RBOHs), the dehydroascorbate reductase (DHAR1) and the photosystem I subunit (PSAD1) highlight the important role of oxidative stress on seed ageing. The cytochrome P‐450 hydroxylase, CYP86A8, and the transcription factors, MYB47, KNAT7 and SEP3, support the protecting role of the seed coat during seed ageing. A combined strategy of GWAS and reverse genetics in Arabidopsis identify novel genes involved in seed longevity. These new genes highlight the role of oxidative stress and seed coat in seed aging.
doi_str_mv 10.1111/pce.13822
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2411540549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2411540549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3882-af9321e2fa2db1aa8e746e566e103fd6cefd57d9b0d4a67c3d92777d67bd192f3</originalsourceid><addsrcrecordid>eNp1kc9O3DAQxi3UqmxpD7wAstRLOQT8L_HmWK0oICG1h_YcOfYYGWXjrcdZurc-As_Ik-BugEOlzmWk0e_7ZjQfIcecnfFS5xsLZ1wuhTggCy6bupJMsTdkwbhildYtPyTvEe8YKwPdviOHUtS8lUovyMO1gzEHH6zJIY40ejrGLQwUARwd4ngL25B39BZGQJpgMLnMc6Txd3BFsgWKOQEiNaObRTaaTPu9JK7h8c_DfXBADWK0YV6CeXIBZkmCLSSE_YIcLH4gb70ZED4-9yPy8-vFj9VVdfPt8nr15aaycrkUlfGtFByEN8L13JglaNVA3TTAmfSuseBdrV3bM6dMo610rdBau0b3jrfCyyPyefbdpPhrAszdOqCFYTAjxAk7oTivFatVW9BP_6B3cUpjua5QSglePt8U6nSmbIqICXy3SWFt0q7jrPsbU1di6vYxFfbk2XHq1-BeyZdcCnA-A_dhgN3_nbrvq4vZ8gllcJ--</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444218226</pqid></control><display><type>article</type><title>Identification of novel seed longevity genes related to oxidative stress and seed coat by genome‐wide association studies and reverse genetics</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><creator>Renard, Joan ; Niñoles, Regina ; Martínez‐Almonacid, Irene ; Gayubas, Beatriz ; Mateos‐Fernández, Rubén ; Bissoli, Gaetano ; Bueso, Eduardo ; Serrano, Ramón ; Gadea, José</creator><creatorcontrib>Renard, Joan ; Niñoles, Regina ; Martínez‐Almonacid, Irene ; Gayubas, Beatriz ; Mateos‐Fernández, Rubén ; Bissoli, Gaetano ; Bueso, Eduardo ; Serrano, Ramón ; Gadea, José</creatorcontrib><description>Seed longevity is a polygenic trait of relevance for agriculture and for understanding the effect of environment on the ageing of biological systems. In order to identify novel longevity genes, we have phenotyped the natural variation of 270 ecotypes of the model plant, Arabidopsis thaliana, for natural ageing and for three accelerated ageing methods. Genome‐wide analysis, using publicly available single‐nucleotide polymorphisms (SNPs) data sets, identified multiple genomic regions associated with variation in seed longevity. Reverse genetics of 20 candidate genes in Columbia ecotype resulted in seven genes positive for seed longevity (PSAD1, SSLEA, SSTPR, DHAR1, CYP86A8, MYB47 and SPCH) and five negative ones (RBOHD, RBOHE, RBOHF, KNAT7 and SEP3). In this uniform genetic background, natural and accelerated ageing methods provided similar results for seed‐longevity in knock‐out mutants. The NADPH oxidases (RBOHs), the dehydroascorbate reductase (DHAR1) and the photosystem I subunit (PSAD1) highlight the important role of oxidative stress on seed ageing. The cytochrome P‐450 hydroxylase, CYP86A8, and the transcription factors, MYB47, KNAT7 and SEP3, support the protecting role of the seed coat during seed ageing. A combined strategy of GWAS and reverse genetics in Arabidopsis identify novel genes involved in seed longevity. These new genes highlight the role of oxidative stress and seed coat in seed aging.</description><identifier>ISSN: 0140-7791</identifier><identifier>EISSN: 1365-3040</identifier><identifier>DOI: 10.1111/pce.13822</identifier><identifier>PMID: 32519347</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>accelerated ageing ; Aging ; Aging (natural) ; Arabidopsis - genetics ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - physiology ; Arabidopsis thaliana ; CYP86A8 ; Cytochromes ; Ecotypes ; Environmental effects ; Genes ; Genes, Plant - genetics ; Genes, Plant - physiology ; Genetics ; Genome-Wide Association Study ; Genomes ; Hydroxylase ; Longevity ; Longevity - genetics ; Microscopy, Confocal ; NAD(P)H oxidase ; NADPH oxidases ; natural variation ; Nucleotides ; Oxidative stress ; Oxidative Stress - genetics ; Phenotypic variations ; Photosystem I ; Plants, Genetically Modified ; Polygenic inheritance ; Polymorphism, Single Nucleotide - genetics ; Quantitative Trait, Heritable ; Reductases ; Reverse Genetics ; seed ageing ; seed coat ; Seed coats ; seed longevity ; Seeds - genetics ; Seeds - physiology ; Seeds - ultrastructure ; Single-nucleotide polymorphism ; Transcription factors ; Transcriptome</subject><ispartof>Plant, cell and environment, 2020-10, Vol.43 (10), p.2523-2539</ispartof><rights>2020 John Wiley &amp; Sons Ltd.</rights><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3882-af9321e2fa2db1aa8e746e566e103fd6cefd57d9b0d4a67c3d92777d67bd192f3</citedby><cites>FETCH-LOGICAL-c3882-af9321e2fa2db1aa8e746e566e103fd6cefd57d9b0d4a67c3d92777d67bd192f3</cites><orcidid>0000-0002-3612-7914 ; 0000-0002-1012-7975 ; 0000-0002-7342-3632 ; 0000-0002-5069-1212 ; 0000-0002-4267-0016 ; 0000-0003-4073-6867 ; 0000-0002-0828-121X ; 0000-0003-1797-1578 ; 0000-0002-7862-9509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpce.13822$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpce.13822$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27903,27904,45553,45554,46387,46811</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32519347$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Renard, Joan</creatorcontrib><creatorcontrib>Niñoles, Regina</creatorcontrib><creatorcontrib>Martínez‐Almonacid, Irene</creatorcontrib><creatorcontrib>Gayubas, Beatriz</creatorcontrib><creatorcontrib>Mateos‐Fernández, Rubén</creatorcontrib><creatorcontrib>Bissoli, Gaetano</creatorcontrib><creatorcontrib>Bueso, Eduardo</creatorcontrib><creatorcontrib>Serrano, Ramón</creatorcontrib><creatorcontrib>Gadea, José</creatorcontrib><title>Identification of novel seed longevity genes related to oxidative stress and seed coat by genome‐wide association studies and reverse genetics</title><title>Plant, cell and environment</title><addtitle>Plant Cell Environ</addtitle><description>Seed longevity is a polygenic trait of relevance for agriculture and for understanding the effect of environment on the ageing of biological systems. In order to identify novel longevity genes, we have phenotyped the natural variation of 270 ecotypes of the model plant, Arabidopsis thaliana, for natural ageing and for three accelerated ageing methods. Genome‐wide analysis, using publicly available single‐nucleotide polymorphisms (SNPs) data sets, identified multiple genomic regions associated with variation in seed longevity. Reverse genetics of 20 candidate genes in Columbia ecotype resulted in seven genes positive for seed longevity (PSAD1, SSLEA, SSTPR, DHAR1, CYP86A8, MYB47 and SPCH) and five negative ones (RBOHD, RBOHE, RBOHF, KNAT7 and SEP3). In this uniform genetic background, natural and accelerated ageing methods provided similar results for seed‐longevity in knock‐out mutants. The NADPH oxidases (RBOHs), the dehydroascorbate reductase (DHAR1) and the photosystem I subunit (PSAD1) highlight the important role of oxidative stress on seed ageing. The cytochrome P‐450 hydroxylase, CYP86A8, and the transcription factors, MYB47, KNAT7 and SEP3, support the protecting role of the seed coat during seed ageing. A combined strategy of GWAS and reverse genetics in Arabidopsis identify novel genes involved in seed longevity. These new genes highlight the role of oxidative stress and seed coat in seed aging.</description><subject>accelerated ageing</subject><subject>Aging</subject><subject>Aging (natural)</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - physiology</subject><subject>Arabidopsis thaliana</subject><subject>CYP86A8</subject><subject>Cytochromes</subject><subject>Ecotypes</subject><subject>Environmental effects</subject><subject>Genes</subject><subject>Genes, Plant - genetics</subject><subject>Genes, Plant - physiology</subject><subject>Genetics</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Hydroxylase</subject><subject>Longevity</subject><subject>Longevity - genetics</subject><subject>Microscopy, Confocal</subject><subject>NAD(P)H oxidase</subject><subject>NADPH oxidases</subject><subject>natural variation</subject><subject>Nucleotides</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - genetics</subject><subject>Phenotypic variations</subject><subject>Photosystem I</subject><subject>Plants, Genetically Modified</subject><subject>Polygenic inheritance</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Quantitative Trait, Heritable</subject><subject>Reductases</subject><subject>Reverse Genetics</subject><subject>seed ageing</subject><subject>seed coat</subject><subject>Seed coats</subject><subject>seed longevity</subject><subject>Seeds - genetics</subject><subject>Seeds - physiology</subject><subject>Seeds - ultrastructure</subject><subject>Single-nucleotide polymorphism</subject><subject>Transcription factors</subject><subject>Transcriptome</subject><issn>0140-7791</issn><issn>1365-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9O3DAQxi3UqmxpD7wAstRLOQT8L_HmWK0oICG1h_YcOfYYGWXjrcdZurc-As_Ik-BugEOlzmWk0e_7ZjQfIcecnfFS5xsLZ1wuhTggCy6bupJMsTdkwbhildYtPyTvEe8YKwPdviOHUtS8lUovyMO1gzEHH6zJIY40ejrGLQwUARwd4ngL25B39BZGQJpgMLnMc6Txd3BFsgWKOQEiNaObRTaaTPu9JK7h8c_DfXBADWK0YV6CeXIBZkmCLSSE_YIcLH4gb70ZED4-9yPy8-vFj9VVdfPt8nr15aaycrkUlfGtFByEN8L13JglaNVA3TTAmfSuseBdrV3bM6dMo610rdBau0b3jrfCyyPyefbdpPhrAszdOqCFYTAjxAk7oTivFatVW9BP_6B3cUpjua5QSglePt8U6nSmbIqICXy3SWFt0q7jrPsbU1di6vYxFfbk2XHq1-BeyZdcCnA-A_dhgN3_nbrvq4vZ8gllcJ--</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Renard, Joan</creator><creator>Niñoles, Regina</creator><creator>Martínez‐Almonacid, Irene</creator><creator>Gayubas, Beatriz</creator><creator>Mateos‐Fernández, Rubén</creator><creator>Bissoli, Gaetano</creator><creator>Bueso, Eduardo</creator><creator>Serrano, Ramón</creator><creator>Gadea, José</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3612-7914</orcidid><orcidid>https://orcid.org/0000-0002-1012-7975</orcidid><orcidid>https://orcid.org/0000-0002-7342-3632</orcidid><orcidid>https://orcid.org/0000-0002-5069-1212</orcidid><orcidid>https://orcid.org/0000-0002-4267-0016</orcidid><orcidid>https://orcid.org/0000-0003-4073-6867</orcidid><orcidid>https://orcid.org/0000-0002-0828-121X</orcidid><orcidid>https://orcid.org/0000-0003-1797-1578</orcidid><orcidid>https://orcid.org/0000-0002-7862-9509</orcidid></search><sort><creationdate>202010</creationdate><title>Identification of novel seed longevity genes related to oxidative stress and seed coat by genome‐wide association studies and reverse genetics</title><author>Renard, Joan ; Niñoles, Regina ; Martínez‐Almonacid, Irene ; Gayubas, Beatriz ; Mateos‐Fernández, Rubén ; Bissoli, Gaetano ; Bueso, Eduardo ; Serrano, Ramón ; Gadea, José</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3882-af9321e2fa2db1aa8e746e566e103fd6cefd57d9b0d4a67c3d92777d67bd192f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>accelerated ageing</topic><topic>Aging</topic><topic>Aging (natural)</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - physiology</topic><topic>Arabidopsis thaliana</topic><topic>CYP86A8</topic><topic>Cytochromes</topic><topic>Ecotypes</topic><topic>Environmental effects</topic><topic>Genes</topic><topic>Genes, Plant - genetics</topic><topic>Genes, Plant - physiology</topic><topic>Genetics</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Hydroxylase</topic><topic>Longevity</topic><topic>Longevity - genetics</topic><topic>Microscopy, Confocal</topic><topic>NAD(P)H oxidase</topic><topic>NADPH oxidases</topic><topic>natural variation</topic><topic>Nucleotides</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - genetics</topic><topic>Phenotypic variations</topic><topic>Photosystem I</topic><topic>Plants, Genetically Modified</topic><topic>Polygenic inheritance</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Quantitative Trait, Heritable</topic><topic>Reductases</topic><topic>Reverse Genetics</topic><topic>seed ageing</topic><topic>seed coat</topic><topic>Seed coats</topic><topic>seed longevity</topic><topic>Seeds - genetics</topic><topic>Seeds - physiology</topic><topic>Seeds - ultrastructure</topic><topic>Single-nucleotide polymorphism</topic><topic>Transcription factors</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Renard, Joan</creatorcontrib><creatorcontrib>Niñoles, Regina</creatorcontrib><creatorcontrib>Martínez‐Almonacid, Irene</creatorcontrib><creatorcontrib>Gayubas, Beatriz</creatorcontrib><creatorcontrib>Mateos‐Fernández, Rubén</creatorcontrib><creatorcontrib>Bissoli, Gaetano</creatorcontrib><creatorcontrib>Bueso, Eduardo</creatorcontrib><creatorcontrib>Serrano, Ramón</creatorcontrib><creatorcontrib>Gadea, José</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Plant, cell and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Renard, Joan</au><au>Niñoles, Regina</au><au>Martínez‐Almonacid, Irene</au><au>Gayubas, Beatriz</au><au>Mateos‐Fernández, Rubén</au><au>Bissoli, Gaetano</au><au>Bueso, Eduardo</au><au>Serrano, Ramón</au><au>Gadea, José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of novel seed longevity genes related to oxidative stress and seed coat by genome‐wide association studies and reverse genetics</atitle><jtitle>Plant, cell and environment</jtitle><addtitle>Plant Cell Environ</addtitle><date>2020-10</date><risdate>2020</risdate><volume>43</volume><issue>10</issue><spage>2523</spage><epage>2539</epage><pages>2523-2539</pages><issn>0140-7791</issn><eissn>1365-3040</eissn><abstract>Seed longevity is a polygenic trait of relevance for agriculture and for understanding the effect of environment on the ageing of biological systems. In order to identify novel longevity genes, we have phenotyped the natural variation of 270 ecotypes of the model plant, Arabidopsis thaliana, for natural ageing and for three accelerated ageing methods. Genome‐wide analysis, using publicly available single‐nucleotide polymorphisms (SNPs) data sets, identified multiple genomic regions associated with variation in seed longevity. Reverse genetics of 20 candidate genes in Columbia ecotype resulted in seven genes positive for seed longevity (PSAD1, SSLEA, SSTPR, DHAR1, CYP86A8, MYB47 and SPCH) and five negative ones (RBOHD, RBOHE, RBOHF, KNAT7 and SEP3). In this uniform genetic background, natural and accelerated ageing methods provided similar results for seed‐longevity in knock‐out mutants. The NADPH oxidases (RBOHs), the dehydroascorbate reductase (DHAR1) and the photosystem I subunit (PSAD1) highlight the important role of oxidative stress on seed ageing. The cytochrome P‐450 hydroxylase, CYP86A8, and the transcription factors, MYB47, KNAT7 and SEP3, support the protecting role of the seed coat during seed ageing. A combined strategy of GWAS and reverse genetics in Arabidopsis identify novel genes involved in seed longevity. These new genes highlight the role of oxidative stress and seed coat in seed aging.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>32519347</pmid><doi>10.1111/pce.13822</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3612-7914</orcidid><orcidid>https://orcid.org/0000-0002-1012-7975</orcidid><orcidid>https://orcid.org/0000-0002-7342-3632</orcidid><orcidid>https://orcid.org/0000-0002-5069-1212</orcidid><orcidid>https://orcid.org/0000-0002-4267-0016</orcidid><orcidid>https://orcid.org/0000-0003-4073-6867</orcidid><orcidid>https://orcid.org/0000-0002-0828-121X</orcidid><orcidid>https://orcid.org/0000-0003-1797-1578</orcidid><orcidid>https://orcid.org/0000-0002-7862-9509</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0140-7791
ispartof Plant, cell and environment, 2020-10, Vol.43 (10), p.2523-2539
issn 0140-7791
1365-3040
language eng
recordid cdi_proquest_miscellaneous_2411540549
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content
subjects accelerated ageing
Aging
Aging (natural)
Arabidopsis - genetics
Arabidopsis Proteins - genetics
Arabidopsis Proteins - physiology
Arabidopsis thaliana
CYP86A8
Cytochromes
Ecotypes
Environmental effects
Genes
Genes, Plant - genetics
Genes, Plant - physiology
Genetics
Genome-Wide Association Study
Genomes
Hydroxylase
Longevity
Longevity - genetics
Microscopy, Confocal
NAD(P)H oxidase
NADPH oxidases
natural variation
Nucleotides
Oxidative stress
Oxidative Stress - genetics
Phenotypic variations
Photosystem I
Plants, Genetically Modified
Polygenic inheritance
Polymorphism, Single Nucleotide - genetics
Quantitative Trait, Heritable
Reductases
Reverse Genetics
seed ageing
seed coat
Seed coats
seed longevity
Seeds - genetics
Seeds - physiology
Seeds - ultrastructure
Single-nucleotide polymorphism
Transcription factors
Transcriptome
title Identification of novel seed longevity genes related to oxidative stress and seed coat by genome‐wide association studies and reverse genetics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A14%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20novel%20seed%20longevity%20genes%20related%20to%20oxidative%20stress%20and%20seed%20coat%20by%20genome%E2%80%90wide%20association%20studies%20and%20reverse%20genetics&rft.jtitle=Plant,%20cell%20and%20environment&rft.au=Renard,%20Joan&rft.date=2020-10&rft.volume=43&rft.issue=10&rft.spage=2523&rft.epage=2539&rft.pages=2523-2539&rft.issn=0140-7791&rft.eissn=1365-3040&rft_id=info:doi/10.1111/pce.13822&rft_dat=%3Cproquest_cross%3E2411540549%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444218226&rft_id=info:pmid/32519347&rfr_iscdi=true