Universal Strategy for Improving the Sensitivity of Detecting Volatile Organic Compounds by Patterned Arrays

The diffusion of target analytes is a determining factor for the sensitivity of a given gas sensor. Surface adsorption results in a low‐concentration region near the sensor surface, producing a concentration gradient perpendicular to the surface, and drives a net flux of molecules toward solid react...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2020-09, Vol.59 (37), p.15953-15957
Hauptverfasser: Liu, Lu, Xiong, Wei, Cui, Linfeng, Xue, Zhenjie, Huang, Chuanhui, Song, Qian, Bai, Wanqiao, Peng, Yage, Chen, Xiangyu, Liu, Keyan, Zhang, Shuwei, Wen, Lei, Che, Yanke, Wang, Tie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15957
container_issue 37
container_start_page 15953
container_title Angewandte Chemie International Edition
container_volume 59
creator Liu, Lu
Xiong, Wei
Cui, Linfeng
Xue, Zhenjie
Huang, Chuanhui
Song, Qian
Bai, Wanqiao
Peng, Yage
Chen, Xiangyu
Liu, Keyan
Zhang, Shuwei
Wen, Lei
Che, Yanke
Wang, Tie
description The diffusion of target analytes is a determining factor for the sensitivity of a given gas sensor. Surface adsorption results in a low‐concentration region near the sensor surface, producing a concentration gradient perpendicular to the surface, and drives a net flux of molecules toward solid reactive reagents on the sensor surface, that is, vertical diffusion. Here, organic semiconductor supramolecules were patterned into micromeshed arrays to integrate vertical and horizontal diffusion pathways. When used as a gas sensor, these arrays have an order of magnitude higher sensitivity than traditional film‐based sensors. The sensor sensitivity ramp down with the increase in coverage density of reactive reagents, yielding two linear regions demarcated by 0.3 coverage, which are identified by the experimental results and simulations. The universal nature of template‐assisted patterning allows adjustments in the composition, size, and shape of the constituent material, including nanofibers, nanoparticles, and molecules, and thus serves to improve the sensitivity of gas sensors for detecting various volatile organic compounds. Molecular diffusion ultimately determines the sensitivity of gas sensors, whose driving force is directly proportional to the analyte concentration gradient. When the vertical diffusion was switched to the integration of vertical and horizontal diffusion, the gas sensors fabricated on patterned arrays displayed an order of magnitude higher sensitivity than their counterpart film‐based sensors.
doi_str_mv 10.1002/anie.202006408
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2411530456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2440447099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3878-24b80d6bc7b7a01ec7db3ec09272228759a838b17e3a30882eda24bececb043f3</originalsourceid><addsrcrecordid>eNqFkMlLAzEUhwdRcL16DnjxMvVlmSZzLHUriAou1yGTeVMj00lN0sr896ZUFLx4yoN831t-WXZKYUQB2IXuLY4YMICxALWTHdCC0ZxLyXdTLTjPpSrofnYYwnvilYLxQda99HaNPuiOPEWvI84H0jpPZould2vbz0l8Q_KEfbDRrm0ciGvJJUY0cfP56jodbYfkwc_TfEOmbrF0q74JpB7Io44RfY8NmXivh3Cc7bW6C3jy_R5lL9dXz9Pb_O7hZjad3OWGK6lyJmoFzbg2spYaKBrZ1BwNlEwyxpQsSq24qqlErjkoxbDRyUGDpgbBW36UnW_7phs-VhhitbDBYNfpHt0qVExQWnAQxTihZ3_Qd7fyfdouUQKEkFCWiRptKeNdCB7bauntQvuholBtwq824Vc_4Seh3AqfKZzhH7qa3M-uft0vMSKJpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440447099</pqid></control><display><type>article</type><title>Universal Strategy for Improving the Sensitivity of Detecting Volatile Organic Compounds by Patterned Arrays</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Lu ; Xiong, Wei ; Cui, Linfeng ; Xue, Zhenjie ; Huang, Chuanhui ; Song, Qian ; Bai, Wanqiao ; Peng, Yage ; Chen, Xiangyu ; Liu, Keyan ; Zhang, Shuwei ; Wen, Lei ; Che, Yanke ; Wang, Tie</creator><creatorcontrib>Liu, Lu ; Xiong, Wei ; Cui, Linfeng ; Xue, Zhenjie ; Huang, Chuanhui ; Song, Qian ; Bai, Wanqiao ; Peng, Yage ; Chen, Xiangyu ; Liu, Keyan ; Zhang, Shuwei ; Wen, Lei ; Che, Yanke ; Wang, Tie</creatorcontrib><description>The diffusion of target analytes is a determining factor for the sensitivity of a given gas sensor. Surface adsorption results in a low‐concentration region near the sensor surface, producing a concentration gradient perpendicular to the surface, and drives a net flux of molecules toward solid reactive reagents on the sensor surface, that is, vertical diffusion. Here, organic semiconductor supramolecules were patterned into micromeshed arrays to integrate vertical and horizontal diffusion pathways. When used as a gas sensor, these arrays have an order of magnitude higher sensitivity than traditional film‐based sensors. The sensor sensitivity ramp down with the increase in coverage density of reactive reagents, yielding two linear regions demarcated by 0.3 coverage, which are identified by the experimental results and simulations. The universal nature of template‐assisted patterning allows adjustments in the composition, size, and shape of the constituent material, including nanofibers, nanoparticles, and molecules, and thus serves to improve the sensitivity of gas sensors for detecting various volatile organic compounds. Molecular diffusion ultimately determines the sensitivity of gas sensors, whose driving force is directly proportional to the analyte concentration gradient. When the vertical diffusion was switched to the integration of vertical and horizontal diffusion, the gas sensors fabricated on patterned arrays displayed an order of magnitude higher sensitivity than their counterpart film‐based sensors.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202006408</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>adsorption ; Concentration gradient ; Diffusion ; Gas sensors ; molecular dynamics ; Nanofibers ; Nanoparticles ; Organic compounds ; Reagents ; Sensor arrays ; Sensors ; thin films ; vapor detection ; VOCs ; Volatile organic compounds</subject><ispartof>Angewandte Chemie International Edition, 2020-09, Vol.59 (37), p.15953-15957</ispartof><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3878-24b80d6bc7b7a01ec7db3ec09272228759a838b17e3a30882eda24bececb043f3</citedby><cites>FETCH-LOGICAL-c3878-24b80d6bc7b7a01ec7db3ec09272228759a838b17e3a30882eda24bececb043f3</cites><orcidid>0000-0001-5965-6520</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202006408$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202006408$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Liu, Lu</creatorcontrib><creatorcontrib>Xiong, Wei</creatorcontrib><creatorcontrib>Cui, Linfeng</creatorcontrib><creatorcontrib>Xue, Zhenjie</creatorcontrib><creatorcontrib>Huang, Chuanhui</creatorcontrib><creatorcontrib>Song, Qian</creatorcontrib><creatorcontrib>Bai, Wanqiao</creatorcontrib><creatorcontrib>Peng, Yage</creatorcontrib><creatorcontrib>Chen, Xiangyu</creatorcontrib><creatorcontrib>Liu, Keyan</creatorcontrib><creatorcontrib>Zhang, Shuwei</creatorcontrib><creatorcontrib>Wen, Lei</creatorcontrib><creatorcontrib>Che, Yanke</creatorcontrib><creatorcontrib>Wang, Tie</creatorcontrib><title>Universal Strategy for Improving the Sensitivity of Detecting Volatile Organic Compounds by Patterned Arrays</title><title>Angewandte Chemie International Edition</title><description>The diffusion of target analytes is a determining factor for the sensitivity of a given gas sensor. Surface adsorption results in a low‐concentration region near the sensor surface, producing a concentration gradient perpendicular to the surface, and drives a net flux of molecules toward solid reactive reagents on the sensor surface, that is, vertical diffusion. Here, organic semiconductor supramolecules were patterned into micromeshed arrays to integrate vertical and horizontal diffusion pathways. When used as a gas sensor, these arrays have an order of magnitude higher sensitivity than traditional film‐based sensors. The sensor sensitivity ramp down with the increase in coverage density of reactive reagents, yielding two linear regions demarcated by 0.3 coverage, which are identified by the experimental results and simulations. The universal nature of template‐assisted patterning allows adjustments in the composition, size, and shape of the constituent material, including nanofibers, nanoparticles, and molecules, and thus serves to improve the sensitivity of gas sensors for detecting various volatile organic compounds. Molecular diffusion ultimately determines the sensitivity of gas sensors, whose driving force is directly proportional to the analyte concentration gradient. When the vertical diffusion was switched to the integration of vertical and horizontal diffusion, the gas sensors fabricated on patterned arrays displayed an order of magnitude higher sensitivity than their counterpart film‐based sensors.</description><subject>adsorption</subject><subject>Concentration gradient</subject><subject>Diffusion</subject><subject>Gas sensors</subject><subject>molecular dynamics</subject><subject>Nanofibers</subject><subject>Nanoparticles</subject><subject>Organic compounds</subject><subject>Reagents</subject><subject>Sensor arrays</subject><subject>Sensors</subject><subject>thin films</subject><subject>vapor detection</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMlLAzEUhwdRcL16DnjxMvVlmSZzLHUriAou1yGTeVMj00lN0sr896ZUFLx4yoN831t-WXZKYUQB2IXuLY4YMICxALWTHdCC0ZxLyXdTLTjPpSrofnYYwnvilYLxQda99HaNPuiOPEWvI84H0jpPZould2vbz0l8Q_KEfbDRrm0ciGvJJUY0cfP56jodbYfkwc_TfEOmbrF0q74JpB7Io44RfY8NmXivh3Cc7bW6C3jy_R5lL9dXz9Pb_O7hZjad3OWGK6lyJmoFzbg2spYaKBrZ1BwNlEwyxpQsSq24qqlErjkoxbDRyUGDpgbBW36UnW_7phs-VhhitbDBYNfpHt0qVExQWnAQxTihZ3_Qd7fyfdouUQKEkFCWiRptKeNdCB7bauntQvuholBtwq824Vc_4Seh3AqfKZzhH7qa3M-uft0vMSKJpw</recordid><startdate>20200907</startdate><enddate>20200907</enddate><creator>Liu, Lu</creator><creator>Xiong, Wei</creator><creator>Cui, Linfeng</creator><creator>Xue, Zhenjie</creator><creator>Huang, Chuanhui</creator><creator>Song, Qian</creator><creator>Bai, Wanqiao</creator><creator>Peng, Yage</creator><creator>Chen, Xiangyu</creator><creator>Liu, Keyan</creator><creator>Zhang, Shuwei</creator><creator>Wen, Lei</creator><creator>Che, Yanke</creator><creator>Wang, Tie</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5965-6520</orcidid></search><sort><creationdate>20200907</creationdate><title>Universal Strategy for Improving the Sensitivity of Detecting Volatile Organic Compounds by Patterned Arrays</title><author>Liu, Lu ; Xiong, Wei ; Cui, Linfeng ; Xue, Zhenjie ; Huang, Chuanhui ; Song, Qian ; Bai, Wanqiao ; Peng, Yage ; Chen, Xiangyu ; Liu, Keyan ; Zhang, Shuwei ; Wen, Lei ; Che, Yanke ; Wang, Tie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3878-24b80d6bc7b7a01ec7db3ec09272228759a838b17e3a30882eda24bececb043f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>adsorption</topic><topic>Concentration gradient</topic><topic>Diffusion</topic><topic>Gas sensors</topic><topic>molecular dynamics</topic><topic>Nanofibers</topic><topic>Nanoparticles</topic><topic>Organic compounds</topic><topic>Reagents</topic><topic>Sensor arrays</topic><topic>Sensors</topic><topic>thin films</topic><topic>vapor detection</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Lu</creatorcontrib><creatorcontrib>Xiong, Wei</creatorcontrib><creatorcontrib>Cui, Linfeng</creatorcontrib><creatorcontrib>Xue, Zhenjie</creatorcontrib><creatorcontrib>Huang, Chuanhui</creatorcontrib><creatorcontrib>Song, Qian</creatorcontrib><creatorcontrib>Bai, Wanqiao</creatorcontrib><creatorcontrib>Peng, Yage</creatorcontrib><creatorcontrib>Chen, Xiangyu</creatorcontrib><creatorcontrib>Liu, Keyan</creatorcontrib><creatorcontrib>Zhang, Shuwei</creatorcontrib><creatorcontrib>Wen, Lei</creatorcontrib><creatorcontrib>Che, Yanke</creatorcontrib><creatorcontrib>Wang, Tie</creatorcontrib><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Lu</au><au>Xiong, Wei</au><au>Cui, Linfeng</au><au>Xue, Zhenjie</au><au>Huang, Chuanhui</au><au>Song, Qian</au><au>Bai, Wanqiao</au><au>Peng, Yage</au><au>Chen, Xiangyu</au><au>Liu, Keyan</au><au>Zhang, Shuwei</au><au>Wen, Lei</au><au>Che, Yanke</au><au>Wang, Tie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal Strategy for Improving the Sensitivity of Detecting Volatile Organic Compounds by Patterned Arrays</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2020-09-07</date><risdate>2020</risdate><volume>59</volume><issue>37</issue><spage>15953</spage><epage>15957</epage><pages>15953-15957</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The diffusion of target analytes is a determining factor for the sensitivity of a given gas sensor. Surface adsorption results in a low‐concentration region near the sensor surface, producing a concentration gradient perpendicular to the surface, and drives a net flux of molecules toward solid reactive reagents on the sensor surface, that is, vertical diffusion. Here, organic semiconductor supramolecules were patterned into micromeshed arrays to integrate vertical and horizontal diffusion pathways. When used as a gas sensor, these arrays have an order of magnitude higher sensitivity than traditional film‐based sensors. The sensor sensitivity ramp down with the increase in coverage density of reactive reagents, yielding two linear regions demarcated by 0.3 coverage, which are identified by the experimental results and simulations. The universal nature of template‐assisted patterning allows adjustments in the composition, size, and shape of the constituent material, including nanofibers, nanoparticles, and molecules, and thus serves to improve the sensitivity of gas sensors for detecting various volatile organic compounds. Molecular diffusion ultimately determines the sensitivity of gas sensors, whose driving force is directly proportional to the analyte concentration gradient. When the vertical diffusion was switched to the integration of vertical and horizontal diffusion, the gas sensors fabricated on patterned arrays displayed an order of magnitude higher sensitivity than their counterpart film‐based sensors.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202006408</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-5965-6520</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2020-09, Vol.59 (37), p.15953-15957
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2411530456
source Wiley Online Library Journals Frontfile Complete
subjects adsorption
Concentration gradient
Diffusion
Gas sensors
molecular dynamics
Nanofibers
Nanoparticles
Organic compounds
Reagents
Sensor arrays
Sensors
thin films
vapor detection
VOCs
Volatile organic compounds
title Universal Strategy for Improving the Sensitivity of Detecting Volatile Organic Compounds by Patterned Arrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A23%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20Strategy%20for%20Improving%20the%20Sensitivity%20of%20Detecting%20Volatile%20Organic%20Compounds%20by%20Patterned%20Arrays&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Liu,%20Lu&rft.date=2020-09-07&rft.volume=59&rft.issue=37&rft.spage=15953&rft.epage=15957&rft.pages=15953-15957&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202006408&rft_dat=%3Cproquest_cross%3E2440447099%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440447099&rft_id=info:pmid/&rfr_iscdi=true