Self‐Assembly and Biorecognition of a Spirohydantoin Derived from α‐Tetralone: Interplay between Chirality and Intermolecular Interactions
A racemic spirohydantoin derivative with two aromatic substituents, a tetralin and a 4‐methoxybenzyl unit, was synthesized and its crystal structure was determined. To define the relationship between molecular stereochemistry and spatial association modes, development of the crystal packing was anal...
Gespeichert in:
Veröffentlicht in: | ChemPlusChem (Weinheim, Germany) Germany), 2020-06, Vol.85 (6), p.1220-1232 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1232 |
---|---|
container_issue | 6 |
container_start_page | 1220 |
container_title | ChemPlusChem (Weinheim, Germany) |
container_volume | 85 |
creator | Lazić, Anita M. Đorđević, Ivana S. Radovanović, Lidija D. Popović, Dragan M. Rogan, Jelena R. Janjić, Goran V. Trišović, Nemanja P. |
description | A racemic spirohydantoin derivative with two aromatic substituents, a tetralin and a 4‐methoxybenzyl unit, was synthesized and its crystal structure was determined. To define the relationship between molecular stereochemistry and spatial association modes, development of the crystal packing was analyzed through cooperativity of intermolecular interactions. Homo and heterochiral dimeric motifs were stabilized by intermolecular N−H⋅⋅⋅O, C−H⋅⋅⋅O, C−H⋅⋅⋅π interactions and parallel interactions at large offsets (PILO), thus forming alternating double layers. The greatest contribution to the total stabilization came from a motif of opposite enantiomers linked by N−H⋅⋅⋅O bonds (interaction energy=−13.72 kcal/mol), followed by a homochiral motif where the 4‐methoxybenzyl units allowed C−H⋅⋅⋅π, C−H⋅⋅⋅O interactions and PILO (interaction energy=−11.56 kcal/mol). The number of the contact fragments in the environment of the tetralin unit was larger, but the 4‐methoxybenzyl unit had greater contribution to the total stabilization. The statistical analysis of the data from the Cambridge Structural Database (CSD) showed that this is a general trend. The compound is a potential inhibitor of kinase enzymes and antigen protein‐coupled receptors. A correlation between the docking study and the results of the CSD analysis can be drawn. Due to a greater flexibility, the 4‐methoxybenzyl unit is more adaptable for interactions with the biological targets than the tetralin unit.
Interactions in the crystal: Development of the crystal structure of a newly synthesized spirohydantoin was described through interplay of homo and heterochiral dimeric motifs associated with different intermolecular interactions. A larger number of the contact fragments found in the environment of the tetralin unit within the crystal structure results from its larger contact surface, while the 4‐methoxybenzyl unit provides a slightly greater contribution to the overall stabilization. This compound was further identified as a potential inhibitor of kinase enzymes and antigen protein‐coupled receptors. |
doi_str_mv | 10.1002/cplu.202000273 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2411111206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2411111206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4133-bf05d54c791d31afec612bad9f4b9992d2b11db602df706c7a43e58ab3561a893</originalsourceid><addsrcrecordid>eNqFkUtuFDEQhi0EItGQLUtkiQ2bGfzox5hdGAhEGgmkJOuW2y4TR267sbsT9Y4bkKtwEQ7BSXDTISA2eGOX6vNXJf0IPaVkQwlhL1Xvxg0jjOSi5g_QIaOCrauSVA__eh-go5SuMkMqUmbuMTrgrKQlrepD9PUMnPnx5fY4JehaN2HpNX5tQwQVPnk72OBxMFjis97GcDlp6YdgPX4D0V6DxiaGDn__lg3nMETpgodX-NQPEHsnJ9zCcAPg8e7S5qYdFv-vfhccqNHJuJRSzbPSE_TISJfg6O5eoYuTt-e79-v9h3enu-P9WhWU83VrSKnLQtWCak6lAVVR1kotTNEKIZhmLaW6rQjTpiaVqmXBodzKlpcVlVvBV-jF4u1j-DxCGprOJgXOSQ9hTA0r6HwYqTL6_B_0KozR5-1maltyUeeVVmizUCqGlCKYpo-2k3FqKGnmtJo5reY-rfzh2Z12bDvQ9_jvbDIgFuDGOpj-o2t2H_cXf-Q_ASMUpds</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418539713</pqid></control><display><type>article</type><title>Self‐Assembly and Biorecognition of a Spirohydantoin Derived from α‐Tetralone: Interplay between Chirality and Intermolecular Interactions</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lazić, Anita M. ; Đorđević, Ivana S. ; Radovanović, Lidija D. ; Popović, Dragan M. ; Rogan, Jelena R. ; Janjić, Goran V. ; Trišović, Nemanja P.</creator><creatorcontrib>Lazić, Anita M. ; Đorđević, Ivana S. ; Radovanović, Lidija D. ; Popović, Dragan M. ; Rogan, Jelena R. ; Janjić, Goran V. ; Trišović, Nemanja P.</creatorcontrib><description>A racemic spirohydantoin derivative with two aromatic substituents, a tetralin and a 4‐methoxybenzyl unit, was synthesized and its crystal structure was determined. To define the relationship between molecular stereochemistry and spatial association modes, development of the crystal packing was analyzed through cooperativity of intermolecular interactions. Homo and heterochiral dimeric motifs were stabilized by intermolecular N−H⋅⋅⋅O, C−H⋅⋅⋅O, C−H⋅⋅⋅π interactions and parallel interactions at large offsets (PILO), thus forming alternating double layers. The greatest contribution to the total stabilization came from a motif of opposite enantiomers linked by N−H⋅⋅⋅O bonds (interaction energy=−13.72 kcal/mol), followed by a homochiral motif where the 4‐methoxybenzyl units allowed C−H⋅⋅⋅π, C−H⋅⋅⋅O interactions and PILO (interaction energy=−11.56 kcal/mol). The number of the contact fragments in the environment of the tetralin unit was larger, but the 4‐methoxybenzyl unit had greater contribution to the total stabilization. The statistical analysis of the data from the Cambridge Structural Database (CSD) showed that this is a general trend. The compound is a potential inhibitor of kinase enzymes and antigen protein‐coupled receptors. A correlation between the docking study and the results of the CSD analysis can be drawn. Due to a greater flexibility, the 4‐methoxybenzyl unit is more adaptable for interactions with the biological targets than the tetralin unit.
Interactions in the crystal: Development of the crystal structure of a newly synthesized spirohydantoin was described through interplay of homo and heterochiral dimeric motifs associated with different intermolecular interactions. A larger number of the contact fragments found in the environment of the tetralin unit within the crystal structure results from its larger contact surface, while the 4‐methoxybenzyl unit provides a slightly greater contribution to the overall stabilization. This compound was further identified as a potential inhibitor of kinase enzymes and antigen protein‐coupled receptors.</description><identifier>ISSN: 2192-6506</identifier><identifier>EISSN: 2192-6506</identifier><identifier>DOI: 10.1002/cplu.202000273</identifier><identifier>PMID: 32515167</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Antigens ; Chemistry ; chiral recognition ; Chirality ; Correlation analysis ; Crystal structure ; Crystallography, X-Ray ; drugs ; Enantiomers ; fragment-based analysis ; Humans ; Hydantoins - chemistry ; Hydantoins - metabolism ; Interleukin-1 Receptor-Associated Kinases - metabolism ; Kinases ; molecular docking ; Molecular Docking Simulation ; noncovalent interactions ; Offsets ; Receptors, Dopamine D3 - metabolism ; Spiro Compounds - chemistry ; Spiro Compounds - metabolism ; Stabilization ; Statistical analysis ; Stereochemistry ; Stereoisomerism ; Tetrahydronaphthalenes - chemistry ; Tetrahydronaphthalenes - metabolism</subject><ispartof>ChemPlusChem (Weinheim, Germany), 2020-06, Vol.85 (6), p.1220-1232</ispartof><rights>2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4133-bf05d54c791d31afec612bad9f4b9992d2b11db602df706c7a43e58ab3561a893</citedby><cites>FETCH-LOGICAL-c4133-bf05d54c791d31afec612bad9f4b9992d2b11db602df706c7a43e58ab3561a893</cites><orcidid>0000-0003-4855-3782</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcplu.202000273$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcplu.202000273$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32515167$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lazić, Anita M.</creatorcontrib><creatorcontrib>Đorđević, Ivana S.</creatorcontrib><creatorcontrib>Radovanović, Lidija D.</creatorcontrib><creatorcontrib>Popović, Dragan M.</creatorcontrib><creatorcontrib>Rogan, Jelena R.</creatorcontrib><creatorcontrib>Janjić, Goran V.</creatorcontrib><creatorcontrib>Trišović, Nemanja P.</creatorcontrib><title>Self‐Assembly and Biorecognition of a Spirohydantoin Derived from α‐Tetralone: Interplay between Chirality and Intermolecular Interactions</title><title>ChemPlusChem (Weinheim, Germany)</title><addtitle>Chempluschem</addtitle><description>A racemic spirohydantoin derivative with two aromatic substituents, a tetralin and a 4‐methoxybenzyl unit, was synthesized and its crystal structure was determined. To define the relationship between molecular stereochemistry and spatial association modes, development of the crystal packing was analyzed through cooperativity of intermolecular interactions. Homo and heterochiral dimeric motifs were stabilized by intermolecular N−H⋅⋅⋅O, C−H⋅⋅⋅O, C−H⋅⋅⋅π interactions and parallel interactions at large offsets (PILO), thus forming alternating double layers. The greatest contribution to the total stabilization came from a motif of opposite enantiomers linked by N−H⋅⋅⋅O bonds (interaction energy=−13.72 kcal/mol), followed by a homochiral motif where the 4‐methoxybenzyl units allowed C−H⋅⋅⋅π, C−H⋅⋅⋅O interactions and PILO (interaction energy=−11.56 kcal/mol). The number of the contact fragments in the environment of the tetralin unit was larger, but the 4‐methoxybenzyl unit had greater contribution to the total stabilization. The statistical analysis of the data from the Cambridge Structural Database (CSD) showed that this is a general trend. The compound is a potential inhibitor of kinase enzymes and antigen protein‐coupled receptors. A correlation between the docking study and the results of the CSD analysis can be drawn. Due to a greater flexibility, the 4‐methoxybenzyl unit is more adaptable for interactions with the biological targets than the tetralin unit.
Interactions in the crystal: Development of the crystal structure of a newly synthesized spirohydantoin was described through interplay of homo and heterochiral dimeric motifs associated with different intermolecular interactions. A larger number of the contact fragments found in the environment of the tetralin unit within the crystal structure results from its larger contact surface, while the 4‐methoxybenzyl unit provides a slightly greater contribution to the overall stabilization. This compound was further identified as a potential inhibitor of kinase enzymes and antigen protein‐coupled receptors.</description><subject>Antigens</subject><subject>Chemistry</subject><subject>chiral recognition</subject><subject>Chirality</subject><subject>Correlation analysis</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>drugs</subject><subject>Enantiomers</subject><subject>fragment-based analysis</subject><subject>Humans</subject><subject>Hydantoins - chemistry</subject><subject>Hydantoins - metabolism</subject><subject>Interleukin-1 Receptor-Associated Kinases - metabolism</subject><subject>Kinases</subject><subject>molecular docking</subject><subject>Molecular Docking Simulation</subject><subject>noncovalent interactions</subject><subject>Offsets</subject><subject>Receptors, Dopamine D3 - metabolism</subject><subject>Spiro Compounds - chemistry</subject><subject>Spiro Compounds - metabolism</subject><subject>Stabilization</subject><subject>Statistical analysis</subject><subject>Stereochemistry</subject><subject>Stereoisomerism</subject><subject>Tetrahydronaphthalenes - chemistry</subject><subject>Tetrahydronaphthalenes - metabolism</subject><issn>2192-6506</issn><issn>2192-6506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtuFDEQhi0EItGQLUtkiQ2bGfzox5hdGAhEGgmkJOuW2y4TR267sbsT9Y4bkKtwEQ7BSXDTISA2eGOX6vNXJf0IPaVkQwlhL1Xvxg0jjOSi5g_QIaOCrauSVA__eh-go5SuMkMqUmbuMTrgrKQlrepD9PUMnPnx5fY4JehaN2HpNX5tQwQVPnk72OBxMFjis97GcDlp6YdgPX4D0V6DxiaGDn__lg3nMETpgodX-NQPEHsnJ9zCcAPg8e7S5qYdFv-vfhccqNHJuJRSzbPSE_TISJfg6O5eoYuTt-e79-v9h3enu-P9WhWU83VrSKnLQtWCak6lAVVR1kotTNEKIZhmLaW6rQjTpiaVqmXBodzKlpcVlVvBV-jF4u1j-DxCGprOJgXOSQ9hTA0r6HwYqTL6_B_0KozR5-1maltyUeeVVmizUCqGlCKYpo-2k3FqKGnmtJo5reY-rfzh2Z12bDvQ9_jvbDIgFuDGOpj-o2t2H_cXf-Q_ASMUpds</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Lazić, Anita M.</creator><creator>Đorđević, Ivana S.</creator><creator>Radovanović, Lidija D.</creator><creator>Popović, Dragan M.</creator><creator>Rogan, Jelena R.</creator><creator>Janjić, Goran V.</creator><creator>Trišović, Nemanja P.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4855-3782</orcidid></search><sort><creationdate>202006</creationdate><title>Self‐Assembly and Biorecognition of a Spirohydantoin Derived from α‐Tetralone: Interplay between Chirality and Intermolecular Interactions</title><author>Lazić, Anita M. ; Đorđević, Ivana S. ; Radovanović, Lidija D. ; Popović, Dragan M. ; Rogan, Jelena R. ; Janjić, Goran V. ; Trišović, Nemanja P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4133-bf05d54c791d31afec612bad9f4b9992d2b11db602df706c7a43e58ab3561a893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antigens</topic><topic>Chemistry</topic><topic>chiral recognition</topic><topic>Chirality</topic><topic>Correlation analysis</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>drugs</topic><topic>Enantiomers</topic><topic>fragment-based analysis</topic><topic>Humans</topic><topic>Hydantoins - chemistry</topic><topic>Hydantoins - metabolism</topic><topic>Interleukin-1 Receptor-Associated Kinases - metabolism</topic><topic>Kinases</topic><topic>molecular docking</topic><topic>Molecular Docking Simulation</topic><topic>noncovalent interactions</topic><topic>Offsets</topic><topic>Receptors, Dopamine D3 - metabolism</topic><topic>Spiro Compounds - chemistry</topic><topic>Spiro Compounds - metabolism</topic><topic>Stabilization</topic><topic>Statistical analysis</topic><topic>Stereochemistry</topic><topic>Stereoisomerism</topic><topic>Tetrahydronaphthalenes - chemistry</topic><topic>Tetrahydronaphthalenes - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lazić, Anita M.</creatorcontrib><creatorcontrib>Đorđević, Ivana S.</creatorcontrib><creatorcontrib>Radovanović, Lidija D.</creatorcontrib><creatorcontrib>Popović, Dragan M.</creatorcontrib><creatorcontrib>Rogan, Jelena R.</creatorcontrib><creatorcontrib>Janjić, Goran V.</creatorcontrib><creatorcontrib>Trišović, Nemanja P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>MEDLINE - Academic</collection><jtitle>ChemPlusChem (Weinheim, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lazić, Anita M.</au><au>Đorđević, Ivana S.</au><au>Radovanović, Lidija D.</au><au>Popović, Dragan M.</au><au>Rogan, Jelena R.</au><au>Janjić, Goran V.</au><au>Trišović, Nemanja P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self‐Assembly and Biorecognition of a Spirohydantoin Derived from α‐Tetralone: Interplay between Chirality and Intermolecular Interactions</atitle><jtitle>ChemPlusChem (Weinheim, Germany)</jtitle><addtitle>Chempluschem</addtitle><date>2020-06</date><risdate>2020</risdate><volume>85</volume><issue>6</issue><spage>1220</spage><epage>1232</epage><pages>1220-1232</pages><issn>2192-6506</issn><eissn>2192-6506</eissn><abstract>A racemic spirohydantoin derivative with two aromatic substituents, a tetralin and a 4‐methoxybenzyl unit, was synthesized and its crystal structure was determined. To define the relationship between molecular stereochemistry and spatial association modes, development of the crystal packing was analyzed through cooperativity of intermolecular interactions. Homo and heterochiral dimeric motifs were stabilized by intermolecular N−H⋅⋅⋅O, C−H⋅⋅⋅O, C−H⋅⋅⋅π interactions and parallel interactions at large offsets (PILO), thus forming alternating double layers. The greatest contribution to the total stabilization came from a motif of opposite enantiomers linked by N−H⋅⋅⋅O bonds (interaction energy=−13.72 kcal/mol), followed by a homochiral motif where the 4‐methoxybenzyl units allowed C−H⋅⋅⋅π, C−H⋅⋅⋅O interactions and PILO (interaction energy=−11.56 kcal/mol). The number of the contact fragments in the environment of the tetralin unit was larger, but the 4‐methoxybenzyl unit had greater contribution to the total stabilization. The statistical analysis of the data from the Cambridge Structural Database (CSD) showed that this is a general trend. The compound is a potential inhibitor of kinase enzymes and antigen protein‐coupled receptors. A correlation between the docking study and the results of the CSD analysis can be drawn. Due to a greater flexibility, the 4‐methoxybenzyl unit is more adaptable for interactions with the biological targets than the tetralin unit.
Interactions in the crystal: Development of the crystal structure of a newly synthesized spirohydantoin was described through interplay of homo and heterochiral dimeric motifs associated with different intermolecular interactions. A larger number of the contact fragments found in the environment of the tetralin unit within the crystal structure results from its larger contact surface, while the 4‐methoxybenzyl unit provides a slightly greater contribution to the overall stabilization. This compound was further identified as a potential inhibitor of kinase enzymes and antigen protein‐coupled receptors.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>32515167</pmid><doi>10.1002/cplu.202000273</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4855-3782</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-6506 |
ispartof | ChemPlusChem (Weinheim, Germany), 2020-06, Vol.85 (6), p.1220-1232 |
issn | 2192-6506 2192-6506 |
language | eng |
recordid | cdi_proquest_miscellaneous_2411111206 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Antigens Chemistry chiral recognition Chirality Correlation analysis Crystal structure Crystallography, X-Ray drugs Enantiomers fragment-based analysis Humans Hydantoins - chemistry Hydantoins - metabolism Interleukin-1 Receptor-Associated Kinases - metabolism Kinases molecular docking Molecular Docking Simulation noncovalent interactions Offsets Receptors, Dopamine D3 - metabolism Spiro Compounds - chemistry Spiro Compounds - metabolism Stabilization Statistical analysis Stereochemistry Stereoisomerism Tetrahydronaphthalenes - chemistry Tetrahydronaphthalenes - metabolism |
title | Self‐Assembly and Biorecognition of a Spirohydantoin Derived from α‐Tetralone: Interplay between Chirality and Intermolecular Interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A46%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self%E2%80%90Assembly%20and%20Biorecognition%20of%20a%20Spirohydantoin%20Derived%20from%20%CE%B1%E2%80%90Tetralone:%20Interplay%20between%20Chirality%20and%20Intermolecular%20Interactions&rft.jtitle=ChemPlusChem%20(Weinheim,%20Germany)&rft.au=Lazi%C4%87,%20Anita%20M.&rft.date=2020-06&rft.volume=85&rft.issue=6&rft.spage=1220&rft.epage=1232&rft.pages=1220-1232&rft.issn=2192-6506&rft.eissn=2192-6506&rft_id=info:doi/10.1002/cplu.202000273&rft_dat=%3Cproquest_cross%3E2411111206%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2418539713&rft_id=info:pmid/32515167&rfr_iscdi=true |