A Quantitatively Accurate Theory to Predict Adsorbed Configurations of Asymmetric Surfactant Molecules on Polar Surfaces

We introduce a theoretical model that predicts adsorbed configurations of asymmetric surfactant molecules on polar surfaces. This model extends the ideas developed in our previous work for predicting adsorbed configurations of linear surfactant molecules on polar surfaces. The surfactant molecules h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2020-07, Vol.124 (26), p.5517-5524
Hauptverfasser: Ko, Xueying, Sharma, Sumit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5524
container_issue 26
container_start_page 5517
container_title The journal of physical chemistry. B
container_volume 124
creator Ko, Xueying
Sharma, Sumit
description We introduce a theoretical model that predicts adsorbed configurations of asymmetric surfactant molecules on polar surfaces. This model extends the ideas developed in our previous work for predicting adsorbed configurations of linear surfactant molecules on polar surfaces. The surfactant molecules have a large polar headgroup and a linear alkyl tail. These asymmetric molecules form cylindrical/spherical morphologies in the adsorbed state. Our model predicts that the molecules adsorb either with their molecular axis parallel to the surface (lying-down configuration) or perpendicular to the surface (standing-up configuration). The standing-up and lying-down configurations result in significantly different adsorbed morphologies. In the standing-up configuration, the adsorbed morphology is like that of full cylinders, while, in the lying-down configuration, the adsorbed morphology resembles partial spheres. The standing-up configuration is obtained when the strength of interaction of the polar headgroup with the surface dominates over the interactions of the alkyl tail with the surface. When interactions of the alkyl tail are dominant, the molecules attain the lying-down configuration. Predictions from the theoretical model quantitatively match the results obtained from Langevin dynamics simulations. The theoretical model also explains the different kinetic pathways that have been reported in the experimental studies on the organization of adsorbed surfactants on polar surfaces.
doi_str_mv 10.1021/acs.jpcb.0c02681
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2411102199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2411102199</sourcerecordid><originalsourceid>FETCH-LOGICAL-a313t-2dee52c62423b4ce3b43d05a362dc947a3bf6f2198dd3fc9e0f61db8cfd405743</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EElDYGT0y0OJH4iZjVPGSiiiizJFjX0OqJC62g8i_x6FZGe5DOt890j0IXVGyoITRW6n8YrdX1YIowkRGj9AZTRmZx1oeT7ugRJyic-93hLCUZeIM_RT4tZddqIMM9Tc0Ay6U6p0MgLefYN2Ag8UbB7pWARfaW1eBxivbmfpjxGrbeWwNLvzQthBcrfBb74xUIZriZ9uA6huISIc3tpFuUsFfoBMjGw-X05yh9_u77epxvn55eFoV67nklIc50wApU4IljFeJgti4JqnkgmmVJ0vJKyMMo3mmNTcqB2IE1VWmjE5Iukz4DF0ffPfOfvXgQ9nWXkHTyA5s70uWUDoGmOcRJQdUOeu9A1PuXd1KN5SUlCNTxpDLMeRyCjme3BxO_hTbuy7-8j_-C-u0gsY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2411102199</pqid></control><display><type>article</type><title>A Quantitatively Accurate Theory to Predict Adsorbed Configurations of Asymmetric Surfactant Molecules on Polar Surfaces</title><source>ACS Publications</source><creator>Ko, Xueying ; Sharma, Sumit</creator><creatorcontrib>Ko, Xueying ; Sharma, Sumit</creatorcontrib><description>We introduce a theoretical model that predicts adsorbed configurations of asymmetric surfactant molecules on polar surfaces. This model extends the ideas developed in our previous work for predicting adsorbed configurations of linear surfactant molecules on polar surfaces. The surfactant molecules have a large polar headgroup and a linear alkyl tail. These asymmetric molecules form cylindrical/spherical morphologies in the adsorbed state. Our model predicts that the molecules adsorb either with their molecular axis parallel to the surface (lying-down configuration) or perpendicular to the surface (standing-up configuration). The standing-up and lying-down configurations result in significantly different adsorbed morphologies. In the standing-up configuration, the adsorbed morphology is like that of full cylinders, while, in the lying-down configuration, the adsorbed morphology resembles partial spheres. The standing-up configuration is obtained when the strength of interaction of the polar headgroup with the surface dominates over the interactions of the alkyl tail with the surface. When interactions of the alkyl tail are dominant, the molecules attain the lying-down configuration. Predictions from the theoretical model quantitatively match the results obtained from Langevin dynamics simulations. The theoretical model also explains the different kinetic pathways that have been reported in the experimental studies on the organization of adsorbed surfactants on polar surfaces.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.0c02681</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>B: Fluid Interfaces, Colloids, Polymers, Soft Matter, Surfactants, and Glassy Materials</subject><ispartof>The journal of physical chemistry. B, 2020-07, Vol.124 (26), p.5517-5524</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a313t-2dee52c62423b4ce3b43d05a362dc947a3bf6f2198dd3fc9e0f61db8cfd405743</citedby><cites>FETCH-LOGICAL-a313t-2dee52c62423b4ce3b43d05a362dc947a3bf6f2198dd3fc9e0f61db8cfd405743</cites><orcidid>0000-0003-3138-5487 ; 0000-0002-7744-7690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.0c02681$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.0c02681$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Ko, Xueying</creatorcontrib><creatorcontrib>Sharma, Sumit</creatorcontrib><title>A Quantitatively Accurate Theory to Predict Adsorbed Configurations of Asymmetric Surfactant Molecules on Polar Surfaces</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>We introduce a theoretical model that predicts adsorbed configurations of asymmetric surfactant molecules on polar surfaces. This model extends the ideas developed in our previous work for predicting adsorbed configurations of linear surfactant molecules on polar surfaces. The surfactant molecules have a large polar headgroup and a linear alkyl tail. These asymmetric molecules form cylindrical/spherical morphologies in the adsorbed state. Our model predicts that the molecules adsorb either with their molecular axis parallel to the surface (lying-down configuration) or perpendicular to the surface (standing-up configuration). The standing-up and lying-down configurations result in significantly different adsorbed morphologies. In the standing-up configuration, the adsorbed morphology is like that of full cylinders, while, in the lying-down configuration, the adsorbed morphology resembles partial spheres. The standing-up configuration is obtained when the strength of interaction of the polar headgroup with the surface dominates over the interactions of the alkyl tail with the surface. When interactions of the alkyl tail are dominant, the molecules attain the lying-down configuration. Predictions from the theoretical model quantitatively match the results obtained from Langevin dynamics simulations. The theoretical model also explains the different kinetic pathways that have been reported in the experimental studies on the organization of adsorbed surfactants on polar surfaces.</description><subject>B: Fluid Interfaces, Colloids, Polymers, Soft Matter, Surfactants, and Glassy Materials</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAUhS0EElDYGT0y0OJH4iZjVPGSiiiizJFjX0OqJC62g8i_x6FZGe5DOt890j0IXVGyoITRW6n8YrdX1YIowkRGj9AZTRmZx1oeT7ugRJyic-93hLCUZeIM_RT4tZddqIMM9Tc0Ay6U6p0MgLefYN2Ag8UbB7pWARfaW1eBxivbmfpjxGrbeWwNLvzQthBcrfBb74xUIZriZ9uA6huISIc3tpFuUsFfoBMjGw-X05yh9_u77epxvn55eFoV67nklIc50wApU4IljFeJgti4JqnkgmmVJ0vJKyMMo3mmNTcqB2IE1VWmjE5Iukz4DF0ffPfOfvXgQ9nWXkHTyA5s70uWUDoGmOcRJQdUOeu9A1PuXd1KN5SUlCNTxpDLMeRyCjme3BxO_hTbuy7-8j_-C-u0gsY</recordid><startdate>20200702</startdate><enddate>20200702</enddate><creator>Ko, Xueying</creator><creator>Sharma, Sumit</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3138-5487</orcidid><orcidid>https://orcid.org/0000-0002-7744-7690</orcidid></search><sort><creationdate>20200702</creationdate><title>A Quantitatively Accurate Theory to Predict Adsorbed Configurations of Asymmetric Surfactant Molecules on Polar Surfaces</title><author>Ko, Xueying ; Sharma, Sumit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a313t-2dee52c62423b4ce3b43d05a362dc947a3bf6f2198dd3fc9e0f61db8cfd405743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>B: Fluid Interfaces, Colloids, Polymers, Soft Matter, Surfactants, and Glassy Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ko, Xueying</creatorcontrib><creatorcontrib>Sharma, Sumit</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ko, Xueying</au><au>Sharma, Sumit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Quantitatively Accurate Theory to Predict Adsorbed Configurations of Asymmetric Surfactant Molecules on Polar Surfaces</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2020-07-02</date><risdate>2020</risdate><volume>124</volume><issue>26</issue><spage>5517</spage><epage>5524</epage><pages>5517-5524</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>We introduce a theoretical model that predicts adsorbed configurations of asymmetric surfactant molecules on polar surfaces. This model extends the ideas developed in our previous work for predicting adsorbed configurations of linear surfactant molecules on polar surfaces. The surfactant molecules have a large polar headgroup and a linear alkyl tail. These asymmetric molecules form cylindrical/spherical morphologies in the adsorbed state. Our model predicts that the molecules adsorb either with their molecular axis parallel to the surface (lying-down configuration) or perpendicular to the surface (standing-up configuration). The standing-up and lying-down configurations result in significantly different adsorbed morphologies. In the standing-up configuration, the adsorbed morphology is like that of full cylinders, while, in the lying-down configuration, the adsorbed morphology resembles partial spheres. The standing-up configuration is obtained when the strength of interaction of the polar headgroup with the surface dominates over the interactions of the alkyl tail with the surface. When interactions of the alkyl tail are dominant, the molecules attain the lying-down configuration. Predictions from the theoretical model quantitatively match the results obtained from Langevin dynamics simulations. The theoretical model also explains the different kinetic pathways that have been reported in the experimental studies on the organization of adsorbed surfactants on polar surfaces.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcb.0c02681</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3138-5487</orcidid><orcidid>https://orcid.org/0000-0002-7744-7690</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2020-07, Vol.124 (26), p.5517-5524
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_2411102199
source ACS Publications
subjects B: Fluid Interfaces, Colloids, Polymers, Soft Matter, Surfactants, and Glassy Materials
title A Quantitatively Accurate Theory to Predict Adsorbed Configurations of Asymmetric Surfactant Molecules on Polar Surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T10%3A07%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Quantitatively%20Accurate%20Theory%20to%20Predict%20Adsorbed%20Configurations%20of%20Asymmetric%20Surfactant%20Molecules%20on%20Polar%20Surfaces&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Ko,%20Xueying&rft.date=2020-07-02&rft.volume=124&rft.issue=26&rft.spage=5517&rft.epage=5524&rft.pages=5517-5524&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.0c02681&rft_dat=%3Cproquest_cross%3E2411102199%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2411102199&rft_id=info:pmid/&rfr_iscdi=true