Integration of metagenomics‐metabolomics reveals specific signatures and functions of airway microbiota in mite‐sensitized childhood asthma

Background Childhood asthma is a multifactorial inflammatory condition of the airways, associated with specific changes in respiratory microbiome and circulating metabolome. Methods To explore the functional capacity of asthmatic microbiome and its intricate connection with the host, we performed sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Allergy (Copenhagen) 2020-11, Vol.75 (11), p.2846-2857
Hauptverfasser: Chiu, Chih‐Yung, Chou, Hsin‐Cheng, Chang, Lun‐Ching, Fan, Wen‐Lang, Dinh, Michael Cong Vinh, Kuo, Yu‐Lun, Chung, Wen‐Hung, Lai, Hsin‐Chih, Hsieh, Wen‐Ping, Su, Shih‐Chi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2857
container_issue 11
container_start_page 2846
container_title Allergy (Copenhagen)
container_volume 75
creator Chiu, Chih‐Yung
Chou, Hsin‐Cheng
Chang, Lun‐Ching
Fan, Wen‐Lang
Dinh, Michael Cong Vinh
Kuo, Yu‐Lun
Chung, Wen‐Hung
Lai, Hsin‐Chih
Hsieh, Wen‐Ping
Su, Shih‐Chi
description Background Childhood asthma is a multifactorial inflammatory condition of the airways, associated with specific changes in respiratory microbiome and circulating metabolome. Methods To explore the functional capacity of asthmatic microbiome and its intricate connection with the host, we performed shotgun sequencing of airway microbiome and untargeted metabolomics profiling of serum samples in a cohort of children with mite‐sensitized asthma and non‐asthmatic controls. Results We observed higher gene counts and sample‐to‐sample dissimilarities in asthmatic microbiomes, indicating a more heterogeneous community structure and functionality among the cases than in controls. Moreover, we identified airway microbial species linked to changes in circulating metabolites and IgE responses of the host, including a positive correlation between Prevotella sp oral taxon 306 and dimethylglycine that were both decreased in patients. Several control‐enriched species (Eubacterium sulci, Prevotella pallens, and Prevotella sp oral taxon 306) were inversely correlated with total and allergen‐specific IgE levels. Genes related to microbial carbohydrate, amino acid, and lipid metabolism were differentially enriched, suggesting that changes in microbial metabolism may contribute to respiratory health in asthmatics. Pathway modules relevant to allergic responses were differentially abundant in asthmatic microbiome, such as enrichments for biofilm formation by Pseudomonas aeruginosa, membrane trafficking, histidine metabolism, and glycosaminoglycan degradation, and depletions for polycyclic aromatic hydrocarbon degradation. Further, we identified metagenomic and metabolomic markers (eg, Eubacterium sulci) to discriminate cases from the non‐asthmatic controls. Conclusions Our dual‐omics data reveal the connections between respiratory microbes and circulating metabolites perturbed in mite‐sensitized pediatric asthma, which may be of etiological and diagnostic implications. This study demonstrates shotgun sequencing of airway microbiome and untargeted metabolomics profiling of serum samples in children with mite‐sensitized asthma and non‐asthmatic controls. Integrative analysis identifies specific airway dysbiosis at the species level and its associated functional shift in strong associations with circulating metabolites and IgE responses to mites. Overall, dual‐omics integration reveals microbe‐metabolite connections perturbed in mite‐sensitized pediatric asthma. Abbreviations: KEGG
doi_str_mv 10.1111/all.14438
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2410730213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2410730213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3538-afe2e1eacef9a112f13be3a450e1de7f6f522f64e93d18559727cbeeb85b18233</originalsourceid><addsrcrecordid>eNp1kctu1DAUhi0EokNhwQsgS2xgkdaXeBIvq4pLpZHYwDo6cY5nXCX2YDtU0xVvAM_Ik-DMFBZIeGP90ufP5-gn5CVnF7ycSxjHC17Xsn1EVlzqttJaq8dkxThTVa1ke0aepXTLGGuEZk_JmRSKrZVqVuTHjc-4jZBd8DRYOmGGLfowOZN-ff-5xD6Mx0gjfkMYE017NM46Q5PbeshzxETBD9TO3iyetIjAxTs40PIwht6FDNT5kjIWa0KfXHb3OFCzc-OwC2GgkPJugufkiS1_4IuH-5x8ef_u8_XHavPpw8311aYysuxTgUWBHMGg1cC5sFz2KKFWDPmAjV1bJYRd16jlwFuldCMa0yP2rep5K6Q8J29O3n0MX2dMuZtcMjiO4DHMqRM1Z41kgi_o63_Q2zBHX6YrlGq0FPIofHuiyr4pRbTdProJ4qHjrFta6kpL3bGlwr56MM79hMNf8k8tBbg8AXduxMP_Td3VZnNS_gYcoaF6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457932323</pqid></control><display><type>article</type><title>Integration of metagenomics‐metabolomics reveals specific signatures and functions of airway microbiota in mite‐sensitized childhood asthma</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Chiu, Chih‐Yung ; Chou, Hsin‐Cheng ; Chang, Lun‐Ching ; Fan, Wen‐Lang ; Dinh, Michael Cong Vinh ; Kuo, Yu‐Lun ; Chung, Wen‐Hung ; Lai, Hsin‐Chih ; Hsieh, Wen‐Ping ; Su, Shih‐Chi</creator><creatorcontrib>Chiu, Chih‐Yung ; Chou, Hsin‐Cheng ; Chang, Lun‐Ching ; Fan, Wen‐Lang ; Dinh, Michael Cong Vinh ; Kuo, Yu‐Lun ; Chung, Wen‐Hung ; Lai, Hsin‐Chih ; Hsieh, Wen‐Ping ; Su, Shih‐Chi</creatorcontrib><description>Background Childhood asthma is a multifactorial inflammatory condition of the airways, associated with specific changes in respiratory microbiome and circulating metabolome. Methods To explore the functional capacity of asthmatic microbiome and its intricate connection with the host, we performed shotgun sequencing of airway microbiome and untargeted metabolomics profiling of serum samples in a cohort of children with mite‐sensitized asthma and non‐asthmatic controls. Results We observed higher gene counts and sample‐to‐sample dissimilarities in asthmatic microbiomes, indicating a more heterogeneous community structure and functionality among the cases than in controls. Moreover, we identified airway microbial species linked to changes in circulating metabolites and IgE responses of the host, including a positive correlation between Prevotella sp oral taxon 306 and dimethylglycine that were both decreased in patients. Several control‐enriched species (Eubacterium sulci, Prevotella pallens, and Prevotella sp oral taxon 306) were inversely correlated with total and allergen‐specific IgE levels. Genes related to microbial carbohydrate, amino acid, and lipid metabolism were differentially enriched, suggesting that changes in microbial metabolism may contribute to respiratory health in asthmatics. Pathway modules relevant to allergic responses were differentially abundant in asthmatic microbiome, such as enrichments for biofilm formation by Pseudomonas aeruginosa, membrane trafficking, histidine metabolism, and glycosaminoglycan degradation, and depletions for polycyclic aromatic hydrocarbon degradation. Further, we identified metagenomic and metabolomic markers (eg, Eubacterium sulci) to discriminate cases from the non‐asthmatic controls. Conclusions Our dual‐omics data reveal the connections between respiratory microbes and circulating metabolites perturbed in mite‐sensitized pediatric asthma, which may be of etiological and diagnostic implications. This study demonstrates shotgun sequencing of airway microbiome and untargeted metabolomics profiling of serum samples in children with mite‐sensitized asthma and non‐asthmatic controls. Integrative analysis identifies specific airway dysbiosis at the species level and its associated functional shift in strong associations with circulating metabolites and IgE responses to mites. Overall, dual‐omics integration reveals microbe‐metabolite connections perturbed in mite‐sensitized pediatric asthma. Abbreviations: KEGG, Kyoto Encyclopedia of Genes and Genomes; AUC, area under the receiver operating characteristic curve</description><identifier>ISSN: 0105-4538</identifier><identifier>EISSN: 1398-9995</identifier><identifier>DOI: 10.1111/all.14438</identifier><identifier>PMID: 32506557</identifier><language>eng</language><publisher>Denmark: Blackwell Publishing Ltd</publisher><subject>airway microbiome ; Allergens ; Amino acids ; Animals ; Asthma ; Asthma - diagnosis ; Biofilms ; Child ; Childhood ; Children ; circulating metabolites ; Community structure ; Dimethylglycine ; Glycosaminoglycans ; Histidine ; Humans ; Hypersensitivity ; Immunoglobulin E ; Inflammation ; Lipid metabolism ; Membrane trafficking ; Metabolism ; Metabolites ; Metabolomics ; Metagenomics ; Microbiomes ; Microbiota ; Mites ; pediatric asthma ; Pediatrics ; Prevotella ; Respiratory tract</subject><ispartof>Allergy (Copenhagen), 2020-11, Vol.75 (11), p.2846-2857</ispartof><rights>2020 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.</rights><rights>2020 EAACI and John Wiley and Sons A/S</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3538-afe2e1eacef9a112f13be3a450e1de7f6f522f64e93d18559727cbeeb85b18233</citedby><cites>FETCH-LOGICAL-c3538-afe2e1eacef9a112f13be3a450e1de7f6f522f64e93d18559727cbeeb85b18233</cites><orcidid>0000-0002-6454-968X ; 0000-0003-1681-0959 ; 0000-0002-1107-9805</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fall.14438$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fall.14438$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32506557$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chiu, Chih‐Yung</creatorcontrib><creatorcontrib>Chou, Hsin‐Cheng</creatorcontrib><creatorcontrib>Chang, Lun‐Ching</creatorcontrib><creatorcontrib>Fan, Wen‐Lang</creatorcontrib><creatorcontrib>Dinh, Michael Cong Vinh</creatorcontrib><creatorcontrib>Kuo, Yu‐Lun</creatorcontrib><creatorcontrib>Chung, Wen‐Hung</creatorcontrib><creatorcontrib>Lai, Hsin‐Chih</creatorcontrib><creatorcontrib>Hsieh, Wen‐Ping</creatorcontrib><creatorcontrib>Su, Shih‐Chi</creatorcontrib><title>Integration of metagenomics‐metabolomics reveals specific signatures and functions of airway microbiota in mite‐sensitized childhood asthma</title><title>Allergy (Copenhagen)</title><addtitle>Allergy</addtitle><description>Background Childhood asthma is a multifactorial inflammatory condition of the airways, associated with specific changes in respiratory microbiome and circulating metabolome. Methods To explore the functional capacity of asthmatic microbiome and its intricate connection with the host, we performed shotgun sequencing of airway microbiome and untargeted metabolomics profiling of serum samples in a cohort of children with mite‐sensitized asthma and non‐asthmatic controls. Results We observed higher gene counts and sample‐to‐sample dissimilarities in asthmatic microbiomes, indicating a more heterogeneous community structure and functionality among the cases than in controls. Moreover, we identified airway microbial species linked to changes in circulating metabolites and IgE responses of the host, including a positive correlation between Prevotella sp oral taxon 306 and dimethylglycine that were both decreased in patients. Several control‐enriched species (Eubacterium sulci, Prevotella pallens, and Prevotella sp oral taxon 306) were inversely correlated with total and allergen‐specific IgE levels. Genes related to microbial carbohydrate, amino acid, and lipid metabolism were differentially enriched, suggesting that changes in microbial metabolism may contribute to respiratory health in asthmatics. Pathway modules relevant to allergic responses were differentially abundant in asthmatic microbiome, such as enrichments for biofilm formation by Pseudomonas aeruginosa, membrane trafficking, histidine metabolism, and glycosaminoglycan degradation, and depletions for polycyclic aromatic hydrocarbon degradation. Further, we identified metagenomic and metabolomic markers (eg, Eubacterium sulci) to discriminate cases from the non‐asthmatic controls. Conclusions Our dual‐omics data reveal the connections between respiratory microbes and circulating metabolites perturbed in mite‐sensitized pediatric asthma, which may be of etiological and diagnostic implications. This study demonstrates shotgun sequencing of airway microbiome and untargeted metabolomics profiling of serum samples in children with mite‐sensitized asthma and non‐asthmatic controls. Integrative analysis identifies specific airway dysbiosis at the species level and its associated functional shift in strong associations with circulating metabolites and IgE responses to mites. Overall, dual‐omics integration reveals microbe‐metabolite connections perturbed in mite‐sensitized pediatric asthma. Abbreviations: KEGG, Kyoto Encyclopedia of Genes and Genomes; AUC, area under the receiver operating characteristic curve</description><subject>airway microbiome</subject><subject>Allergens</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Asthma</subject><subject>Asthma - diagnosis</subject><subject>Biofilms</subject><subject>Child</subject><subject>Childhood</subject><subject>Children</subject><subject>circulating metabolites</subject><subject>Community structure</subject><subject>Dimethylglycine</subject><subject>Glycosaminoglycans</subject><subject>Histidine</subject><subject>Humans</subject><subject>Hypersensitivity</subject><subject>Immunoglobulin E</subject><subject>Inflammation</subject><subject>Lipid metabolism</subject><subject>Membrane trafficking</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Metabolomics</subject><subject>Metagenomics</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>Mites</subject><subject>pediatric asthma</subject><subject>Pediatrics</subject><subject>Prevotella</subject><subject>Respiratory tract</subject><issn>0105-4538</issn><issn>1398-9995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctu1DAUhi0EokNhwQsgS2xgkdaXeBIvq4pLpZHYwDo6cY5nXCX2YDtU0xVvAM_Ik-DMFBZIeGP90ufP5-gn5CVnF7ycSxjHC17Xsn1EVlzqttJaq8dkxThTVa1ke0aepXTLGGuEZk_JmRSKrZVqVuTHjc-4jZBd8DRYOmGGLfowOZN-ff-5xD6Mx0gjfkMYE017NM46Q5PbeshzxETBD9TO3iyetIjAxTs40PIwht6FDNT5kjIWa0KfXHb3OFCzc-OwC2GgkPJugufkiS1_4IuH-5x8ef_u8_XHavPpw8311aYysuxTgUWBHMGg1cC5sFz2KKFWDPmAjV1bJYRd16jlwFuldCMa0yP2rep5K6Q8J29O3n0MX2dMuZtcMjiO4DHMqRM1Z41kgi_o63_Q2zBHX6YrlGq0FPIofHuiyr4pRbTdProJ4qHjrFta6kpL3bGlwr56MM79hMNf8k8tBbg8AXduxMP_Td3VZnNS_gYcoaF6</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Chiu, Chih‐Yung</creator><creator>Chou, Hsin‐Cheng</creator><creator>Chang, Lun‐Ching</creator><creator>Fan, Wen‐Lang</creator><creator>Dinh, Michael Cong Vinh</creator><creator>Kuo, Yu‐Lun</creator><creator>Chung, Wen‐Hung</creator><creator>Lai, Hsin‐Chih</creator><creator>Hsieh, Wen‐Ping</creator><creator>Su, Shih‐Chi</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6454-968X</orcidid><orcidid>https://orcid.org/0000-0003-1681-0959</orcidid><orcidid>https://orcid.org/0000-0002-1107-9805</orcidid></search><sort><creationdate>202011</creationdate><title>Integration of metagenomics‐metabolomics reveals specific signatures and functions of airway microbiota in mite‐sensitized childhood asthma</title><author>Chiu, Chih‐Yung ; Chou, Hsin‐Cheng ; Chang, Lun‐Ching ; Fan, Wen‐Lang ; Dinh, Michael Cong Vinh ; Kuo, Yu‐Lun ; Chung, Wen‐Hung ; Lai, Hsin‐Chih ; Hsieh, Wen‐Ping ; Su, Shih‐Chi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3538-afe2e1eacef9a112f13be3a450e1de7f6f522f64e93d18559727cbeeb85b18233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>airway microbiome</topic><topic>Allergens</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Asthma</topic><topic>Asthma - diagnosis</topic><topic>Biofilms</topic><topic>Child</topic><topic>Childhood</topic><topic>Children</topic><topic>circulating metabolites</topic><topic>Community structure</topic><topic>Dimethylglycine</topic><topic>Glycosaminoglycans</topic><topic>Histidine</topic><topic>Humans</topic><topic>Hypersensitivity</topic><topic>Immunoglobulin E</topic><topic>Inflammation</topic><topic>Lipid metabolism</topic><topic>Membrane trafficking</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Metabolomics</topic><topic>Metagenomics</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>Mites</topic><topic>pediatric asthma</topic><topic>Pediatrics</topic><topic>Prevotella</topic><topic>Respiratory tract</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiu, Chih‐Yung</creatorcontrib><creatorcontrib>Chou, Hsin‐Cheng</creatorcontrib><creatorcontrib>Chang, Lun‐Ching</creatorcontrib><creatorcontrib>Fan, Wen‐Lang</creatorcontrib><creatorcontrib>Dinh, Michael Cong Vinh</creatorcontrib><creatorcontrib>Kuo, Yu‐Lun</creatorcontrib><creatorcontrib>Chung, Wen‐Hung</creatorcontrib><creatorcontrib>Lai, Hsin‐Chih</creatorcontrib><creatorcontrib>Hsieh, Wen‐Ping</creatorcontrib><creatorcontrib>Su, Shih‐Chi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Allergy (Copenhagen)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiu, Chih‐Yung</au><au>Chou, Hsin‐Cheng</au><au>Chang, Lun‐Ching</au><au>Fan, Wen‐Lang</au><au>Dinh, Michael Cong Vinh</au><au>Kuo, Yu‐Lun</au><au>Chung, Wen‐Hung</au><au>Lai, Hsin‐Chih</au><au>Hsieh, Wen‐Ping</au><au>Su, Shih‐Chi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of metagenomics‐metabolomics reveals specific signatures and functions of airway microbiota in mite‐sensitized childhood asthma</atitle><jtitle>Allergy (Copenhagen)</jtitle><addtitle>Allergy</addtitle><date>2020-11</date><risdate>2020</risdate><volume>75</volume><issue>11</issue><spage>2846</spage><epage>2857</epage><pages>2846-2857</pages><issn>0105-4538</issn><eissn>1398-9995</eissn><abstract>Background Childhood asthma is a multifactorial inflammatory condition of the airways, associated with specific changes in respiratory microbiome and circulating metabolome. Methods To explore the functional capacity of asthmatic microbiome and its intricate connection with the host, we performed shotgun sequencing of airway microbiome and untargeted metabolomics profiling of serum samples in a cohort of children with mite‐sensitized asthma and non‐asthmatic controls. Results We observed higher gene counts and sample‐to‐sample dissimilarities in asthmatic microbiomes, indicating a more heterogeneous community structure and functionality among the cases than in controls. Moreover, we identified airway microbial species linked to changes in circulating metabolites and IgE responses of the host, including a positive correlation between Prevotella sp oral taxon 306 and dimethylglycine that were both decreased in patients. Several control‐enriched species (Eubacterium sulci, Prevotella pallens, and Prevotella sp oral taxon 306) were inversely correlated with total and allergen‐specific IgE levels. Genes related to microbial carbohydrate, amino acid, and lipid metabolism were differentially enriched, suggesting that changes in microbial metabolism may contribute to respiratory health in asthmatics. Pathway modules relevant to allergic responses were differentially abundant in asthmatic microbiome, such as enrichments for biofilm formation by Pseudomonas aeruginosa, membrane trafficking, histidine metabolism, and glycosaminoglycan degradation, and depletions for polycyclic aromatic hydrocarbon degradation. Further, we identified metagenomic and metabolomic markers (eg, Eubacterium sulci) to discriminate cases from the non‐asthmatic controls. Conclusions Our dual‐omics data reveal the connections between respiratory microbes and circulating metabolites perturbed in mite‐sensitized pediatric asthma, which may be of etiological and diagnostic implications. This study demonstrates shotgun sequencing of airway microbiome and untargeted metabolomics profiling of serum samples in children with mite‐sensitized asthma and non‐asthmatic controls. Integrative analysis identifies specific airway dysbiosis at the species level and its associated functional shift in strong associations with circulating metabolites and IgE responses to mites. Overall, dual‐omics integration reveals microbe‐metabolite connections perturbed in mite‐sensitized pediatric asthma. Abbreviations: KEGG, Kyoto Encyclopedia of Genes and Genomes; AUC, area under the receiver operating characteristic curve</abstract><cop>Denmark</cop><pub>Blackwell Publishing Ltd</pub><pmid>32506557</pmid><doi>10.1111/all.14438</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6454-968X</orcidid><orcidid>https://orcid.org/0000-0003-1681-0959</orcidid><orcidid>https://orcid.org/0000-0002-1107-9805</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0105-4538
ispartof Allergy (Copenhagen), 2020-11, Vol.75 (11), p.2846-2857
issn 0105-4538
1398-9995
language eng
recordid cdi_proquest_miscellaneous_2410730213
source Wiley Online Library - AutoHoldings Journals; MEDLINE; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection)
subjects airway microbiome
Allergens
Amino acids
Animals
Asthma
Asthma - diagnosis
Biofilms
Child
Childhood
Children
circulating metabolites
Community structure
Dimethylglycine
Glycosaminoglycans
Histidine
Humans
Hypersensitivity
Immunoglobulin E
Inflammation
Lipid metabolism
Membrane trafficking
Metabolism
Metabolites
Metabolomics
Metagenomics
Microbiomes
Microbiota
Mites
pediatric asthma
Pediatrics
Prevotella
Respiratory tract
title Integration of metagenomics‐metabolomics reveals specific signatures and functions of airway microbiota in mite‐sensitized childhood asthma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A32%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20metagenomics%E2%80%90metabolomics%20reveals%20specific%20signatures%20and%20functions%20of%20airway%20microbiota%20in%20mite%E2%80%90sensitized%20childhood%20asthma&rft.jtitle=Allergy%20(Copenhagen)&rft.au=Chiu,%20Chih%E2%80%90Yung&rft.date=2020-11&rft.volume=75&rft.issue=11&rft.spage=2846&rft.epage=2857&rft.pages=2846-2857&rft.issn=0105-4538&rft.eissn=1398-9995&rft_id=info:doi/10.1111/all.14438&rft_dat=%3Cproquest_cross%3E2410730213%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457932323&rft_id=info:pmid/32506557&rfr_iscdi=true