RNF8 promotes high linear energy transfer carbon-ion-induced DNA double-stranded break repair in serum-starved human cells

The cell-killing effect of radiotherapy largely depends on unrepaired DNA double-stranded breaks (DSBs) or lethal chromosome aberrations induced by DSBs. Thus, the capability of DSB repair is critically important for the cancer-cell-killing effect of ionizing radiation. Here, we investigated the inv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:DNA repair 2020-07, Vol.91-92, p.102872-102872, Article 102872
Hauptverfasser: Nakajima, Nakako Izumi, Yamauchi, Motohiro, Kakoti, Sangeeta, Cuihua, Liu, Kato, Reona, Permata, Tiara Bunga Mayang, Iijima, Moito, Yajima, Hirohiko, Yasuhara, Takaaki, Yamada, Shigeru, Hasegawa, Sumitaka, Shibata, Atsushi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 102872
container_issue
container_start_page 102872
container_title DNA repair
container_volume 91-92
creator Nakajima, Nakako Izumi
Yamauchi, Motohiro
Kakoti, Sangeeta
Cuihua, Liu
Kato, Reona
Permata, Tiara Bunga Mayang
Iijima, Moito
Yajima, Hirohiko
Yasuhara, Takaaki
Yamada, Shigeru
Hasegawa, Sumitaka
Shibata, Atsushi
description The cell-killing effect of radiotherapy largely depends on unrepaired DNA double-stranded breaks (DSBs) or lethal chromosome aberrations induced by DSBs. Thus, the capability of DSB repair is critically important for the cancer-cell-killing effect of ionizing radiation. Here, we investigated the involvement of the DNA damage signaling factors ataxia telangiectasia mutated (ATM), ring finger protein 8 (RNF8), and RNF168 in quiescent G0/G1 cells, which are expressed in the majority of cell populations in tumors, after high linear energy transfer (LET) carbon-ion irradiation. Interestingly, ATM inhibition caused a substantial DSB repair defect after high-LET carbon-ion irradiation. Similarly, RNF8 or RNF168 depletion caused a substantial DSB repair defect. ATM inhibition did not exert an additive effect in RNF8-depleted cells, suggesting that ATM and RNF8 function in the same pathway. Importantly, we found that the RNF8 RING mutant showed a similar DSB repair defect, suggesting the requirement of ubiquitin ligase activity in this repair pathway. The RNF8 FHA domain was also required for DSB repair in this axis. Furthermore, the p53-binding protein 1 (53BP1), which is an important downstream factor in RNF8-dependent DSB repair, was also required for this repair. Importantly, either ATM inhibition or RNF8 depletion increased the frequency of chromosomal breaks, but reduced dicentric chromosome formation, demonstrating that ATM/RNF8 is required for the rejoining of DSB ends for the formation of dicentric chromosomes. Finally, we showed that RNF8 depletion augmented radiosensitivity after high-LET carbon-ion irradiation. This study suggests that the inhibition of RNF8 activity or its downstream pathway may augment the efficacy of high-LET carbon-ion therapy.
doi_str_mv 10.1016/j.dnarep.2020.102872
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2410361009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1568786420301208</els_id><sourcerecordid>2410361009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-dee81c6c797878980585e8711c8fc034d41dcd7312fa2c104684be16c7f396e3</originalsourceid><addsrcrecordid>eNp9kE1P3DAQhi3UCijwDxDysZdsbSexvRckxFcrISpV3C3HnrBeEmcZJ0jw63EU4NjDyKOZ9_XMPISccrbijMtf25WPFmG3EkzMJaGV2COHvJa6ULqW375yWR2QHyltGeO1knKfHJSiZkLV8pC8_bu_0XSHQz-MkOgmPG5oFyJYpBABH1_piDamFpA6i80QizBH9JMDT6_uL6gfpqaDIs06n2sNgn2ieTEbkIZIE-DU57bFl9zdTL2N1EHXpWPyvbVdgpOP94g83Fw_XP4u7v7e_rm8uCtcVYux8ACaO-nUWmml15rVugatOHe6daysfMW986rkorXCcVZJXTXAs6Et1xLKI_Jz-TYf-TxBGk0f0ryAjTBMyYiKs1JyxtZZWi1Sh0NKCK3ZYegtvhrOzAzdbM0C3czQzQI9284-JkxND_7L9Ek5C84XAeQzXwKgSS5AzAQDghuNH8L_J7wD0PKVZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2410361009</pqid></control><display><type>article</type><title>RNF8 promotes high linear energy transfer carbon-ion-induced DNA double-stranded break repair in serum-starved human cells</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Nakajima, Nakako Izumi ; Yamauchi, Motohiro ; Kakoti, Sangeeta ; Cuihua, Liu ; Kato, Reona ; Permata, Tiara Bunga Mayang ; Iijima, Moito ; Yajima, Hirohiko ; Yasuhara, Takaaki ; Yamada, Shigeru ; Hasegawa, Sumitaka ; Shibata, Atsushi</creator><creatorcontrib>Nakajima, Nakako Izumi ; Yamauchi, Motohiro ; Kakoti, Sangeeta ; Cuihua, Liu ; Kato, Reona ; Permata, Tiara Bunga Mayang ; Iijima, Moito ; Yajima, Hirohiko ; Yasuhara, Takaaki ; Yamada, Shigeru ; Hasegawa, Sumitaka ; Shibata, Atsushi</creatorcontrib><description>The cell-killing effect of radiotherapy largely depends on unrepaired DNA double-stranded breaks (DSBs) or lethal chromosome aberrations induced by DSBs. Thus, the capability of DSB repair is critically important for the cancer-cell-killing effect of ionizing radiation. Here, we investigated the involvement of the DNA damage signaling factors ataxia telangiectasia mutated (ATM), ring finger protein 8 (RNF8), and RNF168 in quiescent G0/G1 cells, which are expressed in the majority of cell populations in tumors, after high linear energy transfer (LET) carbon-ion irradiation. Interestingly, ATM inhibition caused a substantial DSB repair defect after high-LET carbon-ion irradiation. Similarly, RNF8 or RNF168 depletion caused a substantial DSB repair defect. ATM inhibition did not exert an additive effect in RNF8-depleted cells, suggesting that ATM and RNF8 function in the same pathway. Importantly, we found that the RNF8 RING mutant showed a similar DSB repair defect, suggesting the requirement of ubiquitin ligase activity in this repair pathway. The RNF8 FHA domain was also required for DSB repair in this axis. Furthermore, the p53-binding protein 1 (53BP1), which is an important downstream factor in RNF8-dependent DSB repair, was also required for this repair. Importantly, either ATM inhibition or RNF8 depletion increased the frequency of chromosomal breaks, but reduced dicentric chromosome formation, demonstrating that ATM/RNF8 is required for the rejoining of DSB ends for the formation of dicentric chromosomes. Finally, we showed that RNF8 depletion augmented radiosensitivity after high-LET carbon-ion irradiation. This study suggests that the inhibition of RNF8 activity or its downstream pathway may augment the efficacy of high-LET carbon-ion therapy.</description><identifier>ISSN: 1568-7864</identifier><identifier>EISSN: 1568-7856</identifier><identifier>DOI: 10.1016/j.dnarep.2020.102872</identifier><identifier>PMID: 32502756</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>A549 Cells ; Ataxia Telangiectasia Mutated Proteins - metabolism ; ATM ; Cell Line ; Chromosome Aberrations ; DNA - metabolism ; DNA - radiation effects ; DNA Breaks, Double-Stranded ; DNA End-Joining Repair ; DNA-Binding Proteins - metabolism ; DSB repair ; High-LET carbon-ion irradiation ; Humans ; Linear Energy Transfer ; NHEJ ; Radiation Tolerance ; RNF8 ; Signal Transduction ; Tumor Suppressor p53-Binding Protein 1 - metabolism ; Ubiquitin-Protein Ligases - metabolism ; X-Rays</subject><ispartof>DNA repair, 2020-07, Vol.91-92, p.102872-102872, Article 102872</ispartof><rights>2020 The Authors</rights><rights>Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-dee81c6c797878980585e8711c8fc034d41dcd7312fa2c104684be16c7f396e3</citedby><cites>FETCH-LOGICAL-c452t-dee81c6c797878980585e8711c8fc034d41dcd7312fa2c104684be16c7f396e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dnarep.2020.102872$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32502756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakajima, Nakako Izumi</creatorcontrib><creatorcontrib>Yamauchi, Motohiro</creatorcontrib><creatorcontrib>Kakoti, Sangeeta</creatorcontrib><creatorcontrib>Cuihua, Liu</creatorcontrib><creatorcontrib>Kato, Reona</creatorcontrib><creatorcontrib>Permata, Tiara Bunga Mayang</creatorcontrib><creatorcontrib>Iijima, Moito</creatorcontrib><creatorcontrib>Yajima, Hirohiko</creatorcontrib><creatorcontrib>Yasuhara, Takaaki</creatorcontrib><creatorcontrib>Yamada, Shigeru</creatorcontrib><creatorcontrib>Hasegawa, Sumitaka</creatorcontrib><creatorcontrib>Shibata, Atsushi</creatorcontrib><title>RNF8 promotes high linear energy transfer carbon-ion-induced DNA double-stranded break repair in serum-starved human cells</title><title>DNA repair</title><addtitle>DNA Repair (Amst)</addtitle><description>The cell-killing effect of radiotherapy largely depends on unrepaired DNA double-stranded breaks (DSBs) or lethal chromosome aberrations induced by DSBs. Thus, the capability of DSB repair is critically important for the cancer-cell-killing effect of ionizing radiation. Here, we investigated the involvement of the DNA damage signaling factors ataxia telangiectasia mutated (ATM), ring finger protein 8 (RNF8), and RNF168 in quiescent G0/G1 cells, which are expressed in the majority of cell populations in tumors, after high linear energy transfer (LET) carbon-ion irradiation. Interestingly, ATM inhibition caused a substantial DSB repair defect after high-LET carbon-ion irradiation. Similarly, RNF8 or RNF168 depletion caused a substantial DSB repair defect. ATM inhibition did not exert an additive effect in RNF8-depleted cells, suggesting that ATM and RNF8 function in the same pathway. Importantly, we found that the RNF8 RING mutant showed a similar DSB repair defect, suggesting the requirement of ubiquitin ligase activity in this repair pathway. The RNF8 FHA domain was also required for DSB repair in this axis. Furthermore, the p53-binding protein 1 (53BP1), which is an important downstream factor in RNF8-dependent DSB repair, was also required for this repair. Importantly, either ATM inhibition or RNF8 depletion increased the frequency of chromosomal breaks, but reduced dicentric chromosome formation, demonstrating that ATM/RNF8 is required for the rejoining of DSB ends for the formation of dicentric chromosomes. Finally, we showed that RNF8 depletion augmented radiosensitivity after high-LET carbon-ion irradiation. This study suggests that the inhibition of RNF8 activity or its downstream pathway may augment the efficacy of high-LET carbon-ion therapy.</description><subject>A549 Cells</subject><subject>Ataxia Telangiectasia Mutated Proteins - metabolism</subject><subject>ATM</subject><subject>Cell Line</subject><subject>Chromosome Aberrations</subject><subject>DNA - metabolism</subject><subject>DNA - radiation effects</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA End-Joining Repair</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>DSB repair</subject><subject>High-LET carbon-ion irradiation</subject><subject>Humans</subject><subject>Linear Energy Transfer</subject><subject>NHEJ</subject><subject>Radiation Tolerance</subject><subject>RNF8</subject><subject>Signal Transduction</subject><subject>Tumor Suppressor p53-Binding Protein 1 - metabolism</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><subject>X-Rays</subject><issn>1568-7864</issn><issn>1568-7856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1P3DAQhi3UCijwDxDysZdsbSexvRckxFcrISpV3C3HnrBeEmcZJ0jw63EU4NjDyKOZ9_XMPISccrbijMtf25WPFmG3EkzMJaGV2COHvJa6ULqW375yWR2QHyltGeO1knKfHJSiZkLV8pC8_bu_0XSHQz-MkOgmPG5oFyJYpBABH1_piDamFpA6i80QizBH9JMDT6_uL6gfpqaDIs06n2sNgn2ieTEbkIZIE-DU57bFl9zdTL2N1EHXpWPyvbVdgpOP94g83Fw_XP4u7v7e_rm8uCtcVYux8ACaO-nUWmml15rVugatOHe6daysfMW986rkorXCcVZJXTXAs6Et1xLKI_Jz-TYf-TxBGk0f0ryAjTBMyYiKs1JyxtZZWi1Sh0NKCK3ZYegtvhrOzAzdbM0C3czQzQI9284-JkxND_7L9Ek5C84XAeQzXwKgSS5AzAQDghuNH8L_J7wD0PKVZQ</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Nakajima, Nakako Izumi</creator><creator>Yamauchi, Motohiro</creator><creator>Kakoti, Sangeeta</creator><creator>Cuihua, Liu</creator><creator>Kato, Reona</creator><creator>Permata, Tiara Bunga Mayang</creator><creator>Iijima, Moito</creator><creator>Yajima, Hirohiko</creator><creator>Yasuhara, Takaaki</creator><creator>Yamada, Shigeru</creator><creator>Hasegawa, Sumitaka</creator><creator>Shibata, Atsushi</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202007</creationdate><title>RNF8 promotes high linear energy transfer carbon-ion-induced DNA double-stranded break repair in serum-starved human cells</title><author>Nakajima, Nakako Izumi ; Yamauchi, Motohiro ; Kakoti, Sangeeta ; Cuihua, Liu ; Kato, Reona ; Permata, Tiara Bunga Mayang ; Iijima, Moito ; Yajima, Hirohiko ; Yasuhara, Takaaki ; Yamada, Shigeru ; Hasegawa, Sumitaka ; Shibata, Atsushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-dee81c6c797878980585e8711c8fc034d41dcd7312fa2c104684be16c7f396e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>A549 Cells</topic><topic>Ataxia Telangiectasia Mutated Proteins - metabolism</topic><topic>ATM</topic><topic>Cell Line</topic><topic>Chromosome Aberrations</topic><topic>DNA - metabolism</topic><topic>DNA - radiation effects</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA End-Joining Repair</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>DSB repair</topic><topic>High-LET carbon-ion irradiation</topic><topic>Humans</topic><topic>Linear Energy Transfer</topic><topic>NHEJ</topic><topic>Radiation Tolerance</topic><topic>RNF8</topic><topic>Signal Transduction</topic><topic>Tumor Suppressor p53-Binding Protein 1 - metabolism</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><topic>X-Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakajima, Nakako Izumi</creatorcontrib><creatorcontrib>Yamauchi, Motohiro</creatorcontrib><creatorcontrib>Kakoti, Sangeeta</creatorcontrib><creatorcontrib>Cuihua, Liu</creatorcontrib><creatorcontrib>Kato, Reona</creatorcontrib><creatorcontrib>Permata, Tiara Bunga Mayang</creatorcontrib><creatorcontrib>Iijima, Moito</creatorcontrib><creatorcontrib>Yajima, Hirohiko</creatorcontrib><creatorcontrib>Yasuhara, Takaaki</creatorcontrib><creatorcontrib>Yamada, Shigeru</creatorcontrib><creatorcontrib>Hasegawa, Sumitaka</creatorcontrib><creatorcontrib>Shibata, Atsushi</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>DNA repair</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakajima, Nakako Izumi</au><au>Yamauchi, Motohiro</au><au>Kakoti, Sangeeta</au><au>Cuihua, Liu</au><au>Kato, Reona</au><au>Permata, Tiara Bunga Mayang</au><au>Iijima, Moito</au><au>Yajima, Hirohiko</au><au>Yasuhara, Takaaki</au><au>Yamada, Shigeru</au><au>Hasegawa, Sumitaka</au><au>Shibata, Atsushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RNF8 promotes high linear energy transfer carbon-ion-induced DNA double-stranded break repair in serum-starved human cells</atitle><jtitle>DNA repair</jtitle><addtitle>DNA Repair (Amst)</addtitle><date>2020-07</date><risdate>2020</risdate><volume>91-92</volume><spage>102872</spage><epage>102872</epage><pages>102872-102872</pages><artnum>102872</artnum><issn>1568-7864</issn><eissn>1568-7856</eissn><abstract>The cell-killing effect of radiotherapy largely depends on unrepaired DNA double-stranded breaks (DSBs) or lethal chromosome aberrations induced by DSBs. Thus, the capability of DSB repair is critically important for the cancer-cell-killing effect of ionizing radiation. Here, we investigated the involvement of the DNA damage signaling factors ataxia telangiectasia mutated (ATM), ring finger protein 8 (RNF8), and RNF168 in quiescent G0/G1 cells, which are expressed in the majority of cell populations in tumors, after high linear energy transfer (LET) carbon-ion irradiation. Interestingly, ATM inhibition caused a substantial DSB repair defect after high-LET carbon-ion irradiation. Similarly, RNF8 or RNF168 depletion caused a substantial DSB repair defect. ATM inhibition did not exert an additive effect in RNF8-depleted cells, suggesting that ATM and RNF8 function in the same pathway. Importantly, we found that the RNF8 RING mutant showed a similar DSB repair defect, suggesting the requirement of ubiquitin ligase activity in this repair pathway. The RNF8 FHA domain was also required for DSB repair in this axis. Furthermore, the p53-binding protein 1 (53BP1), which is an important downstream factor in RNF8-dependent DSB repair, was also required for this repair. Importantly, either ATM inhibition or RNF8 depletion increased the frequency of chromosomal breaks, but reduced dicentric chromosome formation, demonstrating that ATM/RNF8 is required for the rejoining of DSB ends for the formation of dicentric chromosomes. Finally, we showed that RNF8 depletion augmented radiosensitivity after high-LET carbon-ion irradiation. This study suggests that the inhibition of RNF8 activity or its downstream pathway may augment the efficacy of high-LET carbon-ion therapy.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>32502756</pmid><doi>10.1016/j.dnarep.2020.102872</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1568-7864
ispartof DNA repair, 2020-07, Vol.91-92, p.102872-102872, Article 102872
issn 1568-7864
1568-7856
language eng
recordid cdi_proquest_miscellaneous_2410361009
source Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE
subjects A549 Cells
Ataxia Telangiectasia Mutated Proteins - metabolism
ATM
Cell Line
Chromosome Aberrations
DNA - metabolism
DNA - radiation effects
DNA Breaks, Double-Stranded
DNA End-Joining Repair
DNA-Binding Proteins - metabolism
DSB repair
High-LET carbon-ion irradiation
Humans
Linear Energy Transfer
NHEJ
Radiation Tolerance
RNF8
Signal Transduction
Tumor Suppressor p53-Binding Protein 1 - metabolism
Ubiquitin-Protein Ligases - metabolism
X-Rays
title RNF8 promotes high linear energy transfer carbon-ion-induced DNA double-stranded break repair in serum-starved human cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A54%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RNF8%20promotes%20high%20linear%20energy%20transfer%20carbon-ion-induced%20DNA%20double-stranded%20break%20repair%20in%20serum-starved%20human%20cells&rft.jtitle=DNA%20repair&rft.au=Nakajima,%20Nakako%20Izumi&rft.date=2020-07&rft.volume=91-92&rft.spage=102872&rft.epage=102872&rft.pages=102872-102872&rft.artnum=102872&rft.issn=1568-7864&rft.eissn=1568-7856&rft_id=info:doi/10.1016/j.dnarep.2020.102872&rft_dat=%3Cproquest_cross%3E2410361009%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2410361009&rft_id=info:pmid/32502756&rft_els_id=S1568786420301208&rfr_iscdi=true