RNF8 promotes high linear energy transfer carbon-ion-induced DNA double-stranded break repair in serum-starved human cells
The cell-killing effect of radiotherapy largely depends on unrepaired DNA double-stranded breaks (DSBs) or lethal chromosome aberrations induced by DSBs. Thus, the capability of DSB repair is critically important for the cancer-cell-killing effect of ionizing radiation. Here, we investigated the inv...
Gespeichert in:
Veröffentlicht in: | DNA repair 2020-07, Vol.91-92, p.102872-102872, Article 102872 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 102872 |
---|---|
container_issue | |
container_start_page | 102872 |
container_title | DNA repair |
container_volume | 91-92 |
creator | Nakajima, Nakako Izumi Yamauchi, Motohiro Kakoti, Sangeeta Cuihua, Liu Kato, Reona Permata, Tiara Bunga Mayang Iijima, Moito Yajima, Hirohiko Yasuhara, Takaaki Yamada, Shigeru Hasegawa, Sumitaka Shibata, Atsushi |
description | The cell-killing effect of radiotherapy largely depends on unrepaired DNA double-stranded breaks (DSBs) or lethal chromosome aberrations induced by DSBs. Thus, the capability of DSB repair is critically important for the cancer-cell-killing effect of ionizing radiation. Here, we investigated the involvement of the DNA damage signaling factors ataxia telangiectasia mutated (ATM), ring finger protein 8 (RNF8), and RNF168 in quiescent G0/G1 cells, which are expressed in the majority of cell populations in tumors, after high linear energy transfer (LET) carbon-ion irradiation. Interestingly, ATM inhibition caused a substantial DSB repair defect after high-LET carbon-ion irradiation. Similarly, RNF8 or RNF168 depletion caused a substantial DSB repair defect. ATM inhibition did not exert an additive effect in RNF8-depleted cells, suggesting that ATM and RNF8 function in the same pathway. Importantly, we found that the RNF8 RING mutant showed a similar DSB repair defect, suggesting the requirement of ubiquitin ligase activity in this repair pathway. The RNF8 FHA domain was also required for DSB repair in this axis. Furthermore, the p53-binding protein 1 (53BP1), which is an important downstream factor in RNF8-dependent DSB repair, was also required for this repair. Importantly, either ATM inhibition or RNF8 depletion increased the frequency of chromosomal breaks, but reduced dicentric chromosome formation, demonstrating that ATM/RNF8 is required for the rejoining of DSB ends for the formation of dicentric chromosomes. Finally, we showed that RNF8 depletion augmented radiosensitivity after high-LET carbon-ion irradiation. This study suggests that the inhibition of RNF8 activity or its downstream pathway may augment the efficacy of high-LET carbon-ion therapy. |
doi_str_mv | 10.1016/j.dnarep.2020.102872 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2410361009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1568786420301208</els_id><sourcerecordid>2410361009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-dee81c6c797878980585e8711c8fc034d41dcd7312fa2c104684be16c7f396e3</originalsourceid><addsrcrecordid>eNp9kE1P3DAQhi3UCijwDxDysZdsbSexvRckxFcrISpV3C3HnrBeEmcZJ0jw63EU4NjDyKOZ9_XMPISccrbijMtf25WPFmG3EkzMJaGV2COHvJa6ULqW375yWR2QHyltGeO1knKfHJSiZkLV8pC8_bu_0XSHQz-MkOgmPG5oFyJYpBABH1_piDamFpA6i80QizBH9JMDT6_uL6gfpqaDIs06n2sNgn2ieTEbkIZIE-DU57bFl9zdTL2N1EHXpWPyvbVdgpOP94g83Fw_XP4u7v7e_rm8uCtcVYux8ACaO-nUWmml15rVugatOHe6daysfMW986rkorXCcVZJXTXAs6Et1xLKI_Jz-TYf-TxBGk0f0ryAjTBMyYiKs1JyxtZZWi1Sh0NKCK3ZYegtvhrOzAzdbM0C3czQzQI9284-JkxND_7L9Ek5C84XAeQzXwKgSS5AzAQDghuNH8L_J7wD0PKVZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2410361009</pqid></control><display><type>article</type><title>RNF8 promotes high linear energy transfer carbon-ion-induced DNA double-stranded break repair in serum-starved human cells</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Nakajima, Nakako Izumi ; Yamauchi, Motohiro ; Kakoti, Sangeeta ; Cuihua, Liu ; Kato, Reona ; Permata, Tiara Bunga Mayang ; Iijima, Moito ; Yajima, Hirohiko ; Yasuhara, Takaaki ; Yamada, Shigeru ; Hasegawa, Sumitaka ; Shibata, Atsushi</creator><creatorcontrib>Nakajima, Nakako Izumi ; Yamauchi, Motohiro ; Kakoti, Sangeeta ; Cuihua, Liu ; Kato, Reona ; Permata, Tiara Bunga Mayang ; Iijima, Moito ; Yajima, Hirohiko ; Yasuhara, Takaaki ; Yamada, Shigeru ; Hasegawa, Sumitaka ; Shibata, Atsushi</creatorcontrib><description>The cell-killing effect of radiotherapy largely depends on unrepaired DNA double-stranded breaks (DSBs) or lethal chromosome aberrations induced by DSBs. Thus, the capability of DSB repair is critically important for the cancer-cell-killing effect of ionizing radiation. Here, we investigated the involvement of the DNA damage signaling factors ataxia telangiectasia mutated (ATM), ring finger protein 8 (RNF8), and RNF168 in quiescent G0/G1 cells, which are expressed in the majority of cell populations in tumors, after high linear energy transfer (LET) carbon-ion irradiation. Interestingly, ATM inhibition caused a substantial DSB repair defect after high-LET carbon-ion irradiation. Similarly, RNF8 or RNF168 depletion caused a substantial DSB repair defect. ATM inhibition did not exert an additive effect in RNF8-depleted cells, suggesting that ATM and RNF8 function in the same pathway. Importantly, we found that the RNF8 RING mutant showed a similar DSB repair defect, suggesting the requirement of ubiquitin ligase activity in this repair pathway. The RNF8 FHA domain was also required for DSB repair in this axis. Furthermore, the p53-binding protein 1 (53BP1), which is an important downstream factor in RNF8-dependent DSB repair, was also required for this repair. Importantly, either ATM inhibition or RNF8 depletion increased the frequency of chromosomal breaks, but reduced dicentric chromosome formation, demonstrating that ATM/RNF8 is required for the rejoining of DSB ends for the formation of dicentric chromosomes. Finally, we showed that RNF8 depletion augmented radiosensitivity after high-LET carbon-ion irradiation. This study suggests that the inhibition of RNF8 activity or its downstream pathway may augment the efficacy of high-LET carbon-ion therapy.</description><identifier>ISSN: 1568-7864</identifier><identifier>EISSN: 1568-7856</identifier><identifier>DOI: 10.1016/j.dnarep.2020.102872</identifier><identifier>PMID: 32502756</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>A549 Cells ; Ataxia Telangiectasia Mutated Proteins - metabolism ; ATM ; Cell Line ; Chromosome Aberrations ; DNA - metabolism ; DNA - radiation effects ; DNA Breaks, Double-Stranded ; DNA End-Joining Repair ; DNA-Binding Proteins - metabolism ; DSB repair ; High-LET carbon-ion irradiation ; Humans ; Linear Energy Transfer ; NHEJ ; Radiation Tolerance ; RNF8 ; Signal Transduction ; Tumor Suppressor p53-Binding Protein 1 - metabolism ; Ubiquitin-Protein Ligases - metabolism ; X-Rays</subject><ispartof>DNA repair, 2020-07, Vol.91-92, p.102872-102872, Article 102872</ispartof><rights>2020 The Authors</rights><rights>Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-dee81c6c797878980585e8711c8fc034d41dcd7312fa2c104684be16c7f396e3</citedby><cites>FETCH-LOGICAL-c452t-dee81c6c797878980585e8711c8fc034d41dcd7312fa2c104684be16c7f396e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dnarep.2020.102872$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32502756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakajima, Nakako Izumi</creatorcontrib><creatorcontrib>Yamauchi, Motohiro</creatorcontrib><creatorcontrib>Kakoti, Sangeeta</creatorcontrib><creatorcontrib>Cuihua, Liu</creatorcontrib><creatorcontrib>Kato, Reona</creatorcontrib><creatorcontrib>Permata, Tiara Bunga Mayang</creatorcontrib><creatorcontrib>Iijima, Moito</creatorcontrib><creatorcontrib>Yajima, Hirohiko</creatorcontrib><creatorcontrib>Yasuhara, Takaaki</creatorcontrib><creatorcontrib>Yamada, Shigeru</creatorcontrib><creatorcontrib>Hasegawa, Sumitaka</creatorcontrib><creatorcontrib>Shibata, Atsushi</creatorcontrib><title>RNF8 promotes high linear energy transfer carbon-ion-induced DNA double-stranded break repair in serum-starved human cells</title><title>DNA repair</title><addtitle>DNA Repair (Amst)</addtitle><description>The cell-killing effect of radiotherapy largely depends on unrepaired DNA double-stranded breaks (DSBs) or lethal chromosome aberrations induced by DSBs. Thus, the capability of DSB repair is critically important for the cancer-cell-killing effect of ionizing radiation. Here, we investigated the involvement of the DNA damage signaling factors ataxia telangiectasia mutated (ATM), ring finger protein 8 (RNF8), and RNF168 in quiescent G0/G1 cells, which are expressed in the majority of cell populations in tumors, after high linear energy transfer (LET) carbon-ion irradiation. Interestingly, ATM inhibition caused a substantial DSB repair defect after high-LET carbon-ion irradiation. Similarly, RNF8 or RNF168 depletion caused a substantial DSB repair defect. ATM inhibition did not exert an additive effect in RNF8-depleted cells, suggesting that ATM and RNF8 function in the same pathway. Importantly, we found that the RNF8 RING mutant showed a similar DSB repair defect, suggesting the requirement of ubiquitin ligase activity in this repair pathway. The RNF8 FHA domain was also required for DSB repair in this axis. Furthermore, the p53-binding protein 1 (53BP1), which is an important downstream factor in RNF8-dependent DSB repair, was also required for this repair. Importantly, either ATM inhibition or RNF8 depletion increased the frequency of chromosomal breaks, but reduced dicentric chromosome formation, demonstrating that ATM/RNF8 is required for the rejoining of DSB ends for the formation of dicentric chromosomes. Finally, we showed that RNF8 depletion augmented radiosensitivity after high-LET carbon-ion irradiation. This study suggests that the inhibition of RNF8 activity or its downstream pathway may augment the efficacy of high-LET carbon-ion therapy.</description><subject>A549 Cells</subject><subject>Ataxia Telangiectasia Mutated Proteins - metabolism</subject><subject>ATM</subject><subject>Cell Line</subject><subject>Chromosome Aberrations</subject><subject>DNA - metabolism</subject><subject>DNA - radiation effects</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA End-Joining Repair</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>DSB repair</subject><subject>High-LET carbon-ion irradiation</subject><subject>Humans</subject><subject>Linear Energy Transfer</subject><subject>NHEJ</subject><subject>Radiation Tolerance</subject><subject>RNF8</subject><subject>Signal Transduction</subject><subject>Tumor Suppressor p53-Binding Protein 1 - metabolism</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><subject>X-Rays</subject><issn>1568-7864</issn><issn>1568-7856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1P3DAQhi3UCijwDxDysZdsbSexvRckxFcrISpV3C3HnrBeEmcZJ0jw63EU4NjDyKOZ9_XMPISccrbijMtf25WPFmG3EkzMJaGV2COHvJa6ULqW375yWR2QHyltGeO1knKfHJSiZkLV8pC8_bu_0XSHQz-MkOgmPG5oFyJYpBABH1_piDamFpA6i80QizBH9JMDT6_uL6gfpqaDIs06n2sNgn2ieTEbkIZIE-DU57bFl9zdTL2N1EHXpWPyvbVdgpOP94g83Fw_XP4u7v7e_rm8uCtcVYux8ACaO-nUWmml15rVugatOHe6daysfMW986rkorXCcVZJXTXAs6Et1xLKI_Jz-TYf-TxBGk0f0ryAjTBMyYiKs1JyxtZZWi1Sh0NKCK3ZYegtvhrOzAzdbM0C3czQzQI9284-JkxND_7L9Ek5C84XAeQzXwKgSS5AzAQDghuNH8L_J7wD0PKVZQ</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Nakajima, Nakako Izumi</creator><creator>Yamauchi, Motohiro</creator><creator>Kakoti, Sangeeta</creator><creator>Cuihua, Liu</creator><creator>Kato, Reona</creator><creator>Permata, Tiara Bunga Mayang</creator><creator>Iijima, Moito</creator><creator>Yajima, Hirohiko</creator><creator>Yasuhara, Takaaki</creator><creator>Yamada, Shigeru</creator><creator>Hasegawa, Sumitaka</creator><creator>Shibata, Atsushi</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202007</creationdate><title>RNF8 promotes high linear energy transfer carbon-ion-induced DNA double-stranded break repair in serum-starved human cells</title><author>Nakajima, Nakako Izumi ; Yamauchi, Motohiro ; Kakoti, Sangeeta ; Cuihua, Liu ; Kato, Reona ; Permata, Tiara Bunga Mayang ; Iijima, Moito ; Yajima, Hirohiko ; Yasuhara, Takaaki ; Yamada, Shigeru ; Hasegawa, Sumitaka ; Shibata, Atsushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-dee81c6c797878980585e8711c8fc034d41dcd7312fa2c104684be16c7f396e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>A549 Cells</topic><topic>Ataxia Telangiectasia Mutated Proteins - metabolism</topic><topic>ATM</topic><topic>Cell Line</topic><topic>Chromosome Aberrations</topic><topic>DNA - metabolism</topic><topic>DNA - radiation effects</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA End-Joining Repair</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>DSB repair</topic><topic>High-LET carbon-ion irradiation</topic><topic>Humans</topic><topic>Linear Energy Transfer</topic><topic>NHEJ</topic><topic>Radiation Tolerance</topic><topic>RNF8</topic><topic>Signal Transduction</topic><topic>Tumor Suppressor p53-Binding Protein 1 - metabolism</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><topic>X-Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakajima, Nakako Izumi</creatorcontrib><creatorcontrib>Yamauchi, Motohiro</creatorcontrib><creatorcontrib>Kakoti, Sangeeta</creatorcontrib><creatorcontrib>Cuihua, Liu</creatorcontrib><creatorcontrib>Kato, Reona</creatorcontrib><creatorcontrib>Permata, Tiara Bunga Mayang</creatorcontrib><creatorcontrib>Iijima, Moito</creatorcontrib><creatorcontrib>Yajima, Hirohiko</creatorcontrib><creatorcontrib>Yasuhara, Takaaki</creatorcontrib><creatorcontrib>Yamada, Shigeru</creatorcontrib><creatorcontrib>Hasegawa, Sumitaka</creatorcontrib><creatorcontrib>Shibata, Atsushi</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>DNA repair</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakajima, Nakako Izumi</au><au>Yamauchi, Motohiro</au><au>Kakoti, Sangeeta</au><au>Cuihua, Liu</au><au>Kato, Reona</au><au>Permata, Tiara Bunga Mayang</au><au>Iijima, Moito</au><au>Yajima, Hirohiko</au><au>Yasuhara, Takaaki</au><au>Yamada, Shigeru</au><au>Hasegawa, Sumitaka</au><au>Shibata, Atsushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RNF8 promotes high linear energy transfer carbon-ion-induced DNA double-stranded break repair in serum-starved human cells</atitle><jtitle>DNA repair</jtitle><addtitle>DNA Repair (Amst)</addtitle><date>2020-07</date><risdate>2020</risdate><volume>91-92</volume><spage>102872</spage><epage>102872</epage><pages>102872-102872</pages><artnum>102872</artnum><issn>1568-7864</issn><eissn>1568-7856</eissn><abstract>The cell-killing effect of radiotherapy largely depends on unrepaired DNA double-stranded breaks (DSBs) or lethal chromosome aberrations induced by DSBs. Thus, the capability of DSB repair is critically important for the cancer-cell-killing effect of ionizing radiation. Here, we investigated the involvement of the DNA damage signaling factors ataxia telangiectasia mutated (ATM), ring finger protein 8 (RNF8), and RNF168 in quiescent G0/G1 cells, which are expressed in the majority of cell populations in tumors, after high linear energy transfer (LET) carbon-ion irradiation. Interestingly, ATM inhibition caused a substantial DSB repair defect after high-LET carbon-ion irradiation. Similarly, RNF8 or RNF168 depletion caused a substantial DSB repair defect. ATM inhibition did not exert an additive effect in RNF8-depleted cells, suggesting that ATM and RNF8 function in the same pathway. Importantly, we found that the RNF8 RING mutant showed a similar DSB repair defect, suggesting the requirement of ubiquitin ligase activity in this repair pathway. The RNF8 FHA domain was also required for DSB repair in this axis. Furthermore, the p53-binding protein 1 (53BP1), which is an important downstream factor in RNF8-dependent DSB repair, was also required for this repair. Importantly, either ATM inhibition or RNF8 depletion increased the frequency of chromosomal breaks, but reduced dicentric chromosome formation, demonstrating that ATM/RNF8 is required for the rejoining of DSB ends for the formation of dicentric chromosomes. Finally, we showed that RNF8 depletion augmented radiosensitivity after high-LET carbon-ion irradiation. This study suggests that the inhibition of RNF8 activity or its downstream pathway may augment the efficacy of high-LET carbon-ion therapy.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>32502756</pmid><doi>10.1016/j.dnarep.2020.102872</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1568-7864 |
ispartof | DNA repair, 2020-07, Vol.91-92, p.102872-102872, Article 102872 |
issn | 1568-7864 1568-7856 |
language | eng |
recordid | cdi_proquest_miscellaneous_2410361009 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE |
subjects | A549 Cells Ataxia Telangiectasia Mutated Proteins - metabolism ATM Cell Line Chromosome Aberrations DNA - metabolism DNA - radiation effects DNA Breaks, Double-Stranded DNA End-Joining Repair DNA-Binding Proteins - metabolism DSB repair High-LET carbon-ion irradiation Humans Linear Energy Transfer NHEJ Radiation Tolerance RNF8 Signal Transduction Tumor Suppressor p53-Binding Protein 1 - metabolism Ubiquitin-Protein Ligases - metabolism X-Rays |
title | RNF8 promotes high linear energy transfer carbon-ion-induced DNA double-stranded break repair in serum-starved human cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A54%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RNF8%20promotes%20high%20linear%20energy%20transfer%20carbon-ion-induced%20DNA%20double-stranded%20break%20repair%20in%20serum-starved%20human%20cells&rft.jtitle=DNA%20repair&rft.au=Nakajima,%20Nakako%20Izumi&rft.date=2020-07&rft.volume=91-92&rft.spage=102872&rft.epage=102872&rft.pages=102872-102872&rft.artnum=102872&rft.issn=1568-7864&rft.eissn=1568-7856&rft_id=info:doi/10.1016/j.dnarep.2020.102872&rft_dat=%3Cproquest_cross%3E2410361009%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2410361009&rft_id=info:pmid/32502756&rft_els_id=S1568786420301208&rfr_iscdi=true |