Poly‐L‐lactide scaffolds with super pores obtained by freeze‐extraction method

A nonplanar polylactide scaffold to be used in tissue engineering was obtained by freeze‐extraction method. Properties of the scaffold were modified by adding Eudragit® E100. The impact of the modification on morphology, porosity and pore size, mass absorbability, mechanical properties was determine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2020-11, Vol.108 (8), p.3162-3173
Hauptverfasser: Budnicka, Monika, Kołbuk, Dorota, Ruśkowski, Paweł, Gadomska‐Gajadhur, Agnieszka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3173
container_issue 8
container_start_page 3162
container_title Journal of biomedical materials research. Part B, Applied biomaterials
container_volume 108
creator Budnicka, Monika
Kołbuk, Dorota
Ruśkowski, Paweł
Gadomska‐Gajadhur, Agnieszka
description A nonplanar polylactide scaffold to be used in tissue engineering was obtained by freeze‐extraction method. Properties of the scaffold were modified by adding Eudragit® E100. The impact of the modification on morphology, porosity and pore size, mass absorbability, mechanical properties was determined. Scanning electron microscopy (SEM), hydrostatic weighing test, static compression test was used to this end. The chemical composition of the scaffold was defined based on infrared spectroscopy (FTIR) and energy‐dispersive X‐ray spectroscopy (EDX). Biocompatibility was confirmed by quantitative tests and microscopic observation. The obtained results show that the obtained scaffolds may be applied as a carrier of hydrophilic cellular growth factors for more efficient tissue regeneration.
doi_str_mv 10.1002/jbm.b.34642
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2410350445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2410350445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3972-ee7ba1bf688021bf3771a596ab54c0ff0204a9dbbcdb42e8cb4b6c930a9c912c3</originalsourceid><addsrcrecordid>eNp90LtOwzAUBmALgSgUJnYUiQUJpfiW20grriqCocyW7ZyoqZK42IlKmXgEnpEnwaWlAwOWrOPhO7-sH6ETggcEY3o5U_VADRiPOd1BBySKaMizlOxu3wnroUPnZh7HOGL7qMdohEmM2QGaPJtq-fXxOfa3krotcwiclkVhqtwFi7KdBq6bgw3mxoILjGpl2UAeqGVQWIB38Hvw1trVqmmCGtqpyY_QXiErB8eb2UcvN9eT0V04frq9H12NQ82yhIYAiZJEFXGaYuonSxIioyyWKuIaFwWmmMssV0rnilNIteIq1hnDMtMZoZr10fk6d27NaweuFXXpNFSVbMB0TlBOMIsw55GnZ3_ozHS28b_ziqcs5f54dbFW2hrnLBRibsta2qUgWKzKFr5socRP2V6fbjI7VUO-tb_tekDXYFFWsPwvSzwMH4fr1G9C_I1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448384444</pqid></control><display><type>article</type><title>Poly‐L‐lactide scaffolds with super pores obtained by freeze‐extraction method</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Budnicka, Monika ; Kołbuk, Dorota ; Ruśkowski, Paweł ; Gadomska‐Gajadhur, Agnieszka</creator><creatorcontrib>Budnicka, Monika ; Kołbuk, Dorota ; Ruśkowski, Paweł ; Gadomska‐Gajadhur, Agnieszka</creatorcontrib><description>A nonplanar polylactide scaffold to be used in tissue engineering was obtained by freeze‐extraction method. Properties of the scaffold were modified by adding Eudragit® E100. The impact of the modification on morphology, porosity and pore size, mass absorbability, mechanical properties was determined. Scanning electron microscopy (SEM), hydrostatic weighing test, static compression test was used to this end. The chemical composition of the scaffold was defined based on infrared spectroscopy (FTIR) and energy‐dispersive X‐ray spectroscopy (EDX). Biocompatibility was confirmed by quantitative tests and microscopic observation. The obtained results show that the obtained scaffolds may be applied as a carrier of hydrophilic cellular growth factors for more efficient tissue regeneration.</description><identifier>ISSN: 1552-4973</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.34642</identifier><identifier>PMID: 32501603</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Biocompatibility ; Biomedical materials ; cellular studies ; Chemical composition ; Compression ; Compression tests ; Eudragit® E100 ; freeze‐extraction ; Growth factors ; Infrared spectroscopy ; Materials research ; Materials science ; Mechanical properties ; Morphology ; Polylactic acid ; poly‐L‐lactide ; Pore size ; Porosity ; Regeneration ; Scaffolds ; Scanning electron microscopy ; Spectrum analysis ; Tissue engineering</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2020-11, Vol.108 (8), p.3162-3173</ispartof><rights>2020 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals, LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3972-ee7ba1bf688021bf3771a596ab54c0ff0204a9dbbcdb42e8cb4b6c930a9c912c3</citedby><cites>FETCH-LOGICAL-c3972-ee7ba1bf688021bf3771a596ab54c0ff0204a9dbbcdb42e8cb4b6c930a9c912c3</cites><orcidid>0000-0001-7686-1745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.b.34642$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.b.34642$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32501603$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Budnicka, Monika</creatorcontrib><creatorcontrib>Kołbuk, Dorota</creatorcontrib><creatorcontrib>Ruśkowski, Paweł</creatorcontrib><creatorcontrib>Gadomska‐Gajadhur, Agnieszka</creatorcontrib><title>Poly‐L‐lactide scaffolds with super pores obtained by freeze‐extraction method</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><description>A nonplanar polylactide scaffold to be used in tissue engineering was obtained by freeze‐extraction method. Properties of the scaffold were modified by adding Eudragit® E100. The impact of the modification on morphology, porosity and pore size, mass absorbability, mechanical properties was determined. Scanning electron microscopy (SEM), hydrostatic weighing test, static compression test was used to this end. The chemical composition of the scaffold was defined based on infrared spectroscopy (FTIR) and energy‐dispersive X‐ray spectroscopy (EDX). Biocompatibility was confirmed by quantitative tests and microscopic observation. The obtained results show that the obtained scaffolds may be applied as a carrier of hydrophilic cellular growth factors for more efficient tissue regeneration.</description><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>cellular studies</subject><subject>Chemical composition</subject><subject>Compression</subject><subject>Compression tests</subject><subject>Eudragit® E100</subject><subject>freeze‐extraction</subject><subject>Growth factors</subject><subject>Infrared spectroscopy</subject><subject>Materials research</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Morphology</subject><subject>Polylactic acid</subject><subject>poly‐L‐lactide</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Regeneration</subject><subject>Scaffolds</subject><subject>Scanning electron microscopy</subject><subject>Spectrum analysis</subject><subject>Tissue engineering</subject><issn>1552-4973</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90LtOwzAUBmALgSgUJnYUiQUJpfiW20grriqCocyW7ZyoqZK42IlKmXgEnpEnwaWlAwOWrOPhO7-sH6ETggcEY3o5U_VADRiPOd1BBySKaMizlOxu3wnroUPnZh7HOGL7qMdohEmM2QGaPJtq-fXxOfa3krotcwiclkVhqtwFi7KdBq6bgw3mxoILjGpl2UAeqGVQWIB38Hvw1trVqmmCGtqpyY_QXiErB8eb2UcvN9eT0V04frq9H12NQ82yhIYAiZJEFXGaYuonSxIioyyWKuIaFwWmmMssV0rnilNIteIq1hnDMtMZoZr10fk6d27NaweuFXXpNFSVbMB0TlBOMIsw55GnZ3_ozHS28b_ziqcs5f54dbFW2hrnLBRibsta2qUgWKzKFr5socRP2V6fbjI7VUO-tb_tekDXYFFWsPwvSzwMH4fr1G9C_I1g</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Budnicka, Monika</creator><creator>Kołbuk, Dorota</creator><creator>Ruśkowski, Paweł</creator><creator>Gadomska‐Gajadhur, Agnieszka</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7686-1745</orcidid></search><sort><creationdate>202011</creationdate><title>Poly‐L‐lactide scaffolds with super pores obtained by freeze‐extraction method</title><author>Budnicka, Monika ; Kołbuk, Dorota ; Ruśkowski, Paweł ; Gadomska‐Gajadhur, Agnieszka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3972-ee7ba1bf688021bf3771a596ab54c0ff0204a9dbbcdb42e8cb4b6c930a9c912c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>cellular studies</topic><topic>Chemical composition</topic><topic>Compression</topic><topic>Compression tests</topic><topic>Eudragit® E100</topic><topic>freeze‐extraction</topic><topic>Growth factors</topic><topic>Infrared spectroscopy</topic><topic>Materials research</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Morphology</topic><topic>Polylactic acid</topic><topic>poly‐L‐lactide</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Regeneration</topic><topic>Scaffolds</topic><topic>Scanning electron microscopy</topic><topic>Spectrum analysis</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Budnicka, Monika</creatorcontrib><creatorcontrib>Kołbuk, Dorota</creatorcontrib><creatorcontrib>Ruśkowski, Paweł</creatorcontrib><creatorcontrib>Gadomska‐Gajadhur, Agnieszka</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Budnicka, Monika</au><au>Kołbuk, Dorota</au><au>Ruśkowski, Paweł</au><au>Gadomska‐Gajadhur, Agnieszka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poly‐L‐lactide scaffolds with super pores obtained by freeze‐extraction method</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><date>2020-11</date><risdate>2020</risdate><volume>108</volume><issue>8</issue><spage>3162</spage><epage>3173</epage><pages>3162-3173</pages><issn>1552-4973</issn><eissn>1552-4981</eissn><abstract>A nonplanar polylactide scaffold to be used in tissue engineering was obtained by freeze‐extraction method. Properties of the scaffold were modified by adding Eudragit® E100. The impact of the modification on morphology, porosity and pore size, mass absorbability, mechanical properties was determined. Scanning electron microscopy (SEM), hydrostatic weighing test, static compression test was used to this end. The chemical composition of the scaffold was defined based on infrared spectroscopy (FTIR) and energy‐dispersive X‐ray spectroscopy (EDX). Biocompatibility was confirmed by quantitative tests and microscopic observation. The obtained results show that the obtained scaffolds may be applied as a carrier of hydrophilic cellular growth factors for more efficient tissue regeneration.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>32501603</pmid><doi>10.1002/jbm.b.34642</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7686-1745</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1552-4973
ispartof Journal of biomedical materials research. Part B, Applied biomaterials, 2020-11, Vol.108 (8), p.3162-3173
issn 1552-4973
1552-4981
language eng
recordid cdi_proquest_miscellaneous_2410350445
source Wiley Online Library Journals Frontfile Complete
subjects Biocompatibility
Biomedical materials
cellular studies
Chemical composition
Compression
Compression tests
Eudragit® E100
freeze‐extraction
Growth factors
Infrared spectroscopy
Materials research
Materials science
Mechanical properties
Morphology
Polylactic acid
poly‐L‐lactide
Pore size
Porosity
Regeneration
Scaffolds
Scanning electron microscopy
Spectrum analysis
Tissue engineering
title Poly‐L‐lactide scaffolds with super pores obtained by freeze‐extraction method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A21%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poly%E2%80%90L%E2%80%90lactide%20scaffolds%20with%20super%20pores%20obtained%20by%20freeze%E2%80%90extraction%20method&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Budnicka,%20Monika&rft.date=2020-11&rft.volume=108&rft.issue=8&rft.spage=3162&rft.epage=3173&rft.pages=3162-3173&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.34642&rft_dat=%3Cproquest_cross%3E2410350445%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448384444&rft_id=info:pmid/32501603&rfr_iscdi=true