Poly‐L‐lactide scaffolds with super pores obtained by freeze‐extraction method
A nonplanar polylactide scaffold to be used in tissue engineering was obtained by freeze‐extraction method. Properties of the scaffold were modified by adding Eudragit® E100. The impact of the modification on morphology, porosity and pore size, mass absorbability, mechanical properties was determine...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2020-11, Vol.108 (8), p.3162-3173 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3173 |
---|---|
container_issue | 8 |
container_start_page | 3162 |
container_title | Journal of biomedical materials research. Part B, Applied biomaterials |
container_volume | 108 |
creator | Budnicka, Monika Kołbuk, Dorota Ruśkowski, Paweł Gadomska‐Gajadhur, Agnieszka |
description | A nonplanar polylactide scaffold to be used in tissue engineering was obtained by freeze‐extraction method. Properties of the scaffold were modified by adding Eudragit® E100. The impact of the modification on morphology, porosity and pore size, mass absorbability, mechanical properties was determined. Scanning electron microscopy (SEM), hydrostatic weighing test, static compression test was used to this end. The chemical composition of the scaffold was defined based on infrared spectroscopy (FTIR) and energy‐dispersive X‐ray spectroscopy (EDX). Biocompatibility was confirmed by quantitative tests and microscopic observation. The obtained results show that the obtained scaffolds may be applied as a carrier of hydrophilic cellular growth factors for more efficient tissue regeneration. |
doi_str_mv | 10.1002/jbm.b.34642 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2410350445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2410350445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3972-ee7ba1bf688021bf3771a596ab54c0ff0204a9dbbcdb42e8cb4b6c930a9c912c3</originalsourceid><addsrcrecordid>eNp90LtOwzAUBmALgSgUJnYUiQUJpfiW20grriqCocyW7ZyoqZK42IlKmXgEnpEnwaWlAwOWrOPhO7-sH6ETggcEY3o5U_VADRiPOd1BBySKaMizlOxu3wnroUPnZh7HOGL7qMdohEmM2QGaPJtq-fXxOfa3krotcwiclkVhqtwFi7KdBq6bgw3mxoILjGpl2UAeqGVQWIB38Hvw1trVqmmCGtqpyY_QXiErB8eb2UcvN9eT0V04frq9H12NQ82yhIYAiZJEFXGaYuonSxIioyyWKuIaFwWmmMssV0rnilNIteIq1hnDMtMZoZr10fk6d27NaweuFXXpNFSVbMB0TlBOMIsw55GnZ3_ozHS28b_ziqcs5f54dbFW2hrnLBRibsta2qUgWKzKFr5socRP2V6fbjI7VUO-tb_tekDXYFFWsPwvSzwMH4fr1G9C_I1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448384444</pqid></control><display><type>article</type><title>Poly‐L‐lactide scaffolds with super pores obtained by freeze‐extraction method</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Budnicka, Monika ; Kołbuk, Dorota ; Ruśkowski, Paweł ; Gadomska‐Gajadhur, Agnieszka</creator><creatorcontrib>Budnicka, Monika ; Kołbuk, Dorota ; Ruśkowski, Paweł ; Gadomska‐Gajadhur, Agnieszka</creatorcontrib><description>A nonplanar polylactide scaffold to be used in tissue engineering was obtained by freeze‐extraction method. Properties of the scaffold were modified by adding Eudragit® E100. The impact of the modification on morphology, porosity and pore size, mass absorbability, mechanical properties was determined. Scanning electron microscopy (SEM), hydrostatic weighing test, static compression test was used to this end. The chemical composition of the scaffold was defined based on infrared spectroscopy (FTIR) and energy‐dispersive X‐ray spectroscopy (EDX). Biocompatibility was confirmed by quantitative tests and microscopic observation. The obtained results show that the obtained scaffolds may be applied as a carrier of hydrophilic cellular growth factors for more efficient tissue regeneration.</description><identifier>ISSN: 1552-4973</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.34642</identifier><identifier>PMID: 32501603</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Biocompatibility ; Biomedical materials ; cellular studies ; Chemical composition ; Compression ; Compression tests ; Eudragit® E100 ; freeze‐extraction ; Growth factors ; Infrared spectroscopy ; Materials research ; Materials science ; Mechanical properties ; Morphology ; Polylactic acid ; poly‐L‐lactide ; Pore size ; Porosity ; Regeneration ; Scaffolds ; Scanning electron microscopy ; Spectrum analysis ; Tissue engineering</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2020-11, Vol.108 (8), p.3162-3173</ispartof><rights>2020 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals, LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3972-ee7ba1bf688021bf3771a596ab54c0ff0204a9dbbcdb42e8cb4b6c930a9c912c3</citedby><cites>FETCH-LOGICAL-c3972-ee7ba1bf688021bf3771a596ab54c0ff0204a9dbbcdb42e8cb4b6c930a9c912c3</cites><orcidid>0000-0001-7686-1745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.b.34642$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.b.34642$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32501603$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Budnicka, Monika</creatorcontrib><creatorcontrib>Kołbuk, Dorota</creatorcontrib><creatorcontrib>Ruśkowski, Paweł</creatorcontrib><creatorcontrib>Gadomska‐Gajadhur, Agnieszka</creatorcontrib><title>Poly‐L‐lactide scaffolds with super pores obtained by freeze‐extraction method</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><description>A nonplanar polylactide scaffold to be used in tissue engineering was obtained by freeze‐extraction method. Properties of the scaffold were modified by adding Eudragit® E100. The impact of the modification on morphology, porosity and pore size, mass absorbability, mechanical properties was determined. Scanning electron microscopy (SEM), hydrostatic weighing test, static compression test was used to this end. The chemical composition of the scaffold was defined based on infrared spectroscopy (FTIR) and energy‐dispersive X‐ray spectroscopy (EDX). Biocompatibility was confirmed by quantitative tests and microscopic observation. The obtained results show that the obtained scaffolds may be applied as a carrier of hydrophilic cellular growth factors for more efficient tissue regeneration.</description><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>cellular studies</subject><subject>Chemical composition</subject><subject>Compression</subject><subject>Compression tests</subject><subject>Eudragit® E100</subject><subject>freeze‐extraction</subject><subject>Growth factors</subject><subject>Infrared spectroscopy</subject><subject>Materials research</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Morphology</subject><subject>Polylactic acid</subject><subject>poly‐L‐lactide</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Regeneration</subject><subject>Scaffolds</subject><subject>Scanning electron microscopy</subject><subject>Spectrum analysis</subject><subject>Tissue engineering</subject><issn>1552-4973</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90LtOwzAUBmALgSgUJnYUiQUJpfiW20grriqCocyW7ZyoqZK42IlKmXgEnpEnwaWlAwOWrOPhO7-sH6ETggcEY3o5U_VADRiPOd1BBySKaMizlOxu3wnroUPnZh7HOGL7qMdohEmM2QGaPJtq-fXxOfa3krotcwiclkVhqtwFi7KdBq6bgw3mxoILjGpl2UAeqGVQWIB38Hvw1trVqmmCGtqpyY_QXiErB8eb2UcvN9eT0V04frq9H12NQ82yhIYAiZJEFXGaYuonSxIioyyWKuIaFwWmmMssV0rnilNIteIq1hnDMtMZoZr10fk6d27NaweuFXXpNFSVbMB0TlBOMIsw55GnZ3_ozHS28b_ziqcs5f54dbFW2hrnLBRibsta2qUgWKzKFr5socRP2V6fbjI7VUO-tb_tekDXYFFWsPwvSzwMH4fr1G9C_I1g</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Budnicka, Monika</creator><creator>Kołbuk, Dorota</creator><creator>Ruśkowski, Paweł</creator><creator>Gadomska‐Gajadhur, Agnieszka</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7686-1745</orcidid></search><sort><creationdate>202011</creationdate><title>Poly‐L‐lactide scaffolds with super pores obtained by freeze‐extraction method</title><author>Budnicka, Monika ; Kołbuk, Dorota ; Ruśkowski, Paweł ; Gadomska‐Gajadhur, Agnieszka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3972-ee7ba1bf688021bf3771a596ab54c0ff0204a9dbbcdb42e8cb4b6c930a9c912c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>cellular studies</topic><topic>Chemical composition</topic><topic>Compression</topic><topic>Compression tests</topic><topic>Eudragit® E100</topic><topic>freeze‐extraction</topic><topic>Growth factors</topic><topic>Infrared spectroscopy</topic><topic>Materials research</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Morphology</topic><topic>Polylactic acid</topic><topic>poly‐L‐lactide</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Regeneration</topic><topic>Scaffolds</topic><topic>Scanning electron microscopy</topic><topic>Spectrum analysis</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Budnicka, Monika</creatorcontrib><creatorcontrib>Kołbuk, Dorota</creatorcontrib><creatorcontrib>Ruśkowski, Paweł</creatorcontrib><creatorcontrib>Gadomska‐Gajadhur, Agnieszka</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Budnicka, Monika</au><au>Kołbuk, Dorota</au><au>Ruśkowski, Paweł</au><au>Gadomska‐Gajadhur, Agnieszka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poly‐L‐lactide scaffolds with super pores obtained by freeze‐extraction method</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><date>2020-11</date><risdate>2020</risdate><volume>108</volume><issue>8</issue><spage>3162</spage><epage>3173</epage><pages>3162-3173</pages><issn>1552-4973</issn><eissn>1552-4981</eissn><abstract>A nonplanar polylactide scaffold to be used in tissue engineering was obtained by freeze‐extraction method. Properties of the scaffold were modified by adding Eudragit® E100. The impact of the modification on morphology, porosity and pore size, mass absorbability, mechanical properties was determined. Scanning electron microscopy (SEM), hydrostatic weighing test, static compression test was used to this end. The chemical composition of the scaffold was defined based on infrared spectroscopy (FTIR) and energy‐dispersive X‐ray spectroscopy (EDX). Biocompatibility was confirmed by quantitative tests and microscopic observation. The obtained results show that the obtained scaffolds may be applied as a carrier of hydrophilic cellular growth factors for more efficient tissue regeneration.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>32501603</pmid><doi>10.1002/jbm.b.34642</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7686-1745</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4973 |
ispartof | Journal of biomedical materials research. Part B, Applied biomaterials, 2020-11, Vol.108 (8), p.3162-3173 |
issn | 1552-4973 1552-4981 |
language | eng |
recordid | cdi_proquest_miscellaneous_2410350445 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Biocompatibility Biomedical materials cellular studies Chemical composition Compression Compression tests Eudragit® E100 freeze‐extraction Growth factors Infrared spectroscopy Materials research Materials science Mechanical properties Morphology Polylactic acid poly‐L‐lactide Pore size Porosity Regeneration Scaffolds Scanning electron microscopy Spectrum analysis Tissue engineering |
title | Poly‐L‐lactide scaffolds with super pores obtained by freeze‐extraction method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A21%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poly%E2%80%90L%E2%80%90lactide%20scaffolds%20with%20super%20pores%20obtained%20by%20freeze%E2%80%90extraction%20method&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Budnicka,%20Monika&rft.date=2020-11&rft.volume=108&rft.issue=8&rft.spage=3162&rft.epage=3173&rft.pages=3162-3173&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.34642&rft_dat=%3Cproquest_cross%3E2410350445%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448384444&rft_id=info:pmid/32501603&rfr_iscdi=true |