Crocin Reverses Depression-Like Behavior in Parkinson Disease Mice via VTA-mPFC Pathway

Depression is a common non-motor symptom in patients with Parkinson’s disease (PD) and difficult to treat. Crocin is a natural multipotential neuroprotective compound that has been shown to elicit antidepressant activity and is promising for the therapy of neuropsychological diseases. Here, we inves...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular neurobiology 2020-07, Vol.57 (7), p.3158-3170
Hauptverfasser: Tang, Juanjuan, Lu, Linyu, Wang, Qisheng, Liu, Hou, Xue, Wenda, Zhou, Tong, Xu, Liantiao, Wang, Kai, Wu, Die, Wei, Fei, Tao, Weiwei, Chen, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3170
container_issue 7
container_start_page 3158
container_title Molecular neurobiology
container_volume 57
creator Tang, Juanjuan
Lu, Linyu
Wang, Qisheng
Liu, Hou
Xue, Wenda
Zhou, Tong
Xu, Liantiao
Wang, Kai
Wu, Die
Wei, Fei
Tao, Weiwei
Chen, Gang
description Depression is a common non-motor symptom in patients with Parkinson’s disease (PD) and difficult to treat. Crocin is a natural multipotential neuroprotective compound that has been shown to elicit antidepressant activity and is promising for the therapy of neuropsychological diseases. Here, we investigated the therapeutic effect of crocin in a mouse model of Parkinson’s disease depression (PDD) and clarified the underlying mechanism. We prepared 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced subacute mouse model of PD, and found that around 60% of the model mice showed depression-like behavior, using the forced swimming test (FST). A regime of 10-day treatment of crocin alleviated the PDD symptoms. The crocin reduced the structural damage in soma volume and axon length of neurons and inhibited their spontaneous discharge in dopaminergic (DA) neurons in the ventral tegmental area (VTA). Notably, the MPTP-treated mice showed the decrease in the critical signaling for synaptic plasticity, including the proteins of PSD-95, synapsin-1, and GluR-1, in the medial prefrontal cortex (mPFC) where it receives efferent from VTA and regulates depression-like behavior. However, crocin treatment rescued the defect of the mammalian target of rapamycin (mTOR) signaling in PDD mice. Furthermore, the antidepressant action of crocin was blunted after blockade of mTOR signaling with the antagonist rapamycin. In conclusion, our study demonstrated that crocin protected the DA projection neurons in the VTA through activating mTOR, which subsequently improved the neural synaptic plasticity of mPFC, and ameliorated depression-like behavior in PD mice.
doi_str_mv 10.1007/s12035-020-01941-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2409647408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2417699917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-1dd7dfc43e211b748a93c872b18227b3976739b0f5db40c28c2aab724d2042a03</originalsourceid><addsrcrecordid>eNp9kE1vEzEQhi1ERdPCH-CAVuLCxXQ89sbrY0kpIKWiQv04Wl7vhLpNdlNPkqr_vqZpQeLQ0xzmmXdmHiHeK_isAOwBKwRdS0CQoJxREl-JkaprJ5Vq8LUYQeO0tGPT7Io95msARAX2jdjVaFytGhiJy0keYuqrX7ShzMTVES0zMaehl9N0Q9UXugqbNOSqQKch36Seh746SkyBqTpJkapNCtXF2aFcnB5PCrO6ugv3b8XOLMyZ3j3VfXF-_PVs8l1Of377MTmcyqhtvZKq62w3i0YTKtVa0wSnY2OxLQ-gbbWzY6tdC7O6aw1EbCKG0Fo0HYLBAHpffNrmLvNwuyZe-UXiSPN56GlYs0cDbmysgaagH_9Dr4d17st1hVJ27JxTtlC4pWIemDPN_DKnRcj3XoH_o91vtfui3T9q91iGPjxFr9sFdX9Hnj0XQG8BLq3-N-V_u1-IfQA2lYrW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417699917</pqid></control><display><type>article</type><title>Crocin Reverses Depression-Like Behavior in Parkinson Disease Mice via VTA-mPFC Pathway</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Tang, Juanjuan ; Lu, Linyu ; Wang, Qisheng ; Liu, Hou ; Xue, Wenda ; Zhou, Tong ; Xu, Liantiao ; Wang, Kai ; Wu, Die ; Wei, Fei ; Tao, Weiwei ; Chen, Gang</creator><creatorcontrib>Tang, Juanjuan ; Lu, Linyu ; Wang, Qisheng ; Liu, Hou ; Xue, Wenda ; Zhou, Tong ; Xu, Liantiao ; Wang, Kai ; Wu, Die ; Wei, Fei ; Tao, Weiwei ; Chen, Gang</creatorcontrib><description>Depression is a common non-motor symptom in patients with Parkinson’s disease (PD) and difficult to treat. Crocin is a natural multipotential neuroprotective compound that has been shown to elicit antidepressant activity and is promising for the therapy of neuropsychological diseases. Here, we investigated the therapeutic effect of crocin in a mouse model of Parkinson’s disease depression (PDD) and clarified the underlying mechanism. We prepared 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced subacute mouse model of PD, and found that around 60% of the model mice showed depression-like behavior, using the forced swimming test (FST). A regime of 10-day treatment of crocin alleviated the PDD symptoms. The crocin reduced the structural damage in soma volume and axon length of neurons and inhibited their spontaneous discharge in dopaminergic (DA) neurons in the ventral tegmental area (VTA). Notably, the MPTP-treated mice showed the decrease in the critical signaling for synaptic plasticity, including the proteins of PSD-95, synapsin-1, and GluR-1, in the medial prefrontal cortex (mPFC) where it receives efferent from VTA and regulates depression-like behavior. However, crocin treatment rescued the defect of the mammalian target of rapamycin (mTOR) signaling in PDD mice. Furthermore, the antidepressant action of crocin was blunted after blockade of mTOR signaling with the antagonist rapamycin. In conclusion, our study demonstrated that crocin protected the DA projection neurons in the VTA through activating mTOR, which subsequently improved the neural synaptic plasticity of mPFC, and ameliorated depression-like behavior in PD mice.</description><identifier>ISSN: 0893-7648</identifier><identifier>EISSN: 1559-1182</identifier><identifier>DOI: 10.1007/s12035-020-01941-2</identifier><identifier>PMID: 32495180</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animal models ; Animals ; Antidepressants ; Behavior, Animal - drug effects ; Biomedical and Life Sciences ; Biomedicine ; Carotenoids - pharmacology ; Cell Biology ; Depression - metabolism ; Dopamine receptors ; Glutamate receptors ; Male ; Mental depression ; Mice ; Movement disorders ; MPTP ; Neural Pathways - drug effects ; Neurobiology ; Neurodegenerative diseases ; Neurology ; Neuronal Plasticity - drug effects ; Neurons ; Neuroplasticity ; Neuroprotection ; Neurosciences ; Original Article ; Parkinson's disease ; Parkinsonian Disorders - metabolism ; Postsynaptic density proteins ; Prefrontal cortex ; Prefrontal Cortex - drug effects ; Prefrontal Cortex - metabolism ; Rapamycin ; Receptors, AMPA - metabolism ; Signal Transduction - drug effects ; Swimming behavior ; Synapsin ; Synapsins - metabolism ; Synaptic plasticity ; TOR protein ; Ventral Tegmental Area - drug effects ; Ventral Tegmental Area - metabolism ; Ventral tegmentum</subject><ispartof>Molecular neurobiology, 2020-07, Vol.57 (7), p.3158-3170</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-1dd7dfc43e211b748a93c872b18227b3976739b0f5db40c28c2aab724d2042a03</citedby><cites>FETCH-LOGICAL-c375t-1dd7dfc43e211b748a93c872b18227b3976739b0f5db40c28c2aab724d2042a03</cites><orcidid>0000-0002-3507-1218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12035-020-01941-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12035-020-01941-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32495180$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Juanjuan</creatorcontrib><creatorcontrib>Lu, Linyu</creatorcontrib><creatorcontrib>Wang, Qisheng</creatorcontrib><creatorcontrib>Liu, Hou</creatorcontrib><creatorcontrib>Xue, Wenda</creatorcontrib><creatorcontrib>Zhou, Tong</creatorcontrib><creatorcontrib>Xu, Liantiao</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Wu, Die</creatorcontrib><creatorcontrib>Wei, Fei</creatorcontrib><creatorcontrib>Tao, Weiwei</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><title>Crocin Reverses Depression-Like Behavior in Parkinson Disease Mice via VTA-mPFC Pathway</title><title>Molecular neurobiology</title><addtitle>Mol Neurobiol</addtitle><addtitle>Mol Neurobiol</addtitle><description>Depression is a common non-motor symptom in patients with Parkinson’s disease (PD) and difficult to treat. Crocin is a natural multipotential neuroprotective compound that has been shown to elicit antidepressant activity and is promising for the therapy of neuropsychological diseases. Here, we investigated the therapeutic effect of crocin in a mouse model of Parkinson’s disease depression (PDD) and clarified the underlying mechanism. We prepared 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced subacute mouse model of PD, and found that around 60% of the model mice showed depression-like behavior, using the forced swimming test (FST). A regime of 10-day treatment of crocin alleviated the PDD symptoms. The crocin reduced the structural damage in soma volume and axon length of neurons and inhibited their spontaneous discharge in dopaminergic (DA) neurons in the ventral tegmental area (VTA). Notably, the MPTP-treated mice showed the decrease in the critical signaling for synaptic plasticity, including the proteins of PSD-95, synapsin-1, and GluR-1, in the medial prefrontal cortex (mPFC) where it receives efferent from VTA and regulates depression-like behavior. However, crocin treatment rescued the defect of the mammalian target of rapamycin (mTOR) signaling in PDD mice. Furthermore, the antidepressant action of crocin was blunted after blockade of mTOR signaling with the antagonist rapamycin. In conclusion, our study demonstrated that crocin protected the DA projection neurons in the VTA through activating mTOR, which subsequently improved the neural synaptic plasticity of mPFC, and ameliorated depression-like behavior in PD mice.</description><subject>Animal models</subject><subject>Animals</subject><subject>Antidepressants</subject><subject>Behavior, Animal - drug effects</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Carotenoids - pharmacology</subject><subject>Cell Biology</subject><subject>Depression - metabolism</subject><subject>Dopamine receptors</subject><subject>Glutamate receptors</subject><subject>Male</subject><subject>Mental depression</subject><subject>Mice</subject><subject>Movement disorders</subject><subject>MPTP</subject><subject>Neural Pathways - drug effects</subject><subject>Neurobiology</subject><subject>Neurodegenerative diseases</subject><subject>Neurology</subject><subject>Neuronal Plasticity - drug effects</subject><subject>Neurons</subject><subject>Neuroplasticity</subject><subject>Neuroprotection</subject><subject>Neurosciences</subject><subject>Original Article</subject><subject>Parkinson's disease</subject><subject>Parkinsonian Disorders - metabolism</subject><subject>Postsynaptic density proteins</subject><subject>Prefrontal cortex</subject><subject>Prefrontal Cortex - drug effects</subject><subject>Prefrontal Cortex - metabolism</subject><subject>Rapamycin</subject><subject>Receptors, AMPA - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Swimming behavior</subject><subject>Synapsin</subject><subject>Synapsins - metabolism</subject><subject>Synaptic plasticity</subject><subject>TOR protein</subject><subject>Ventral Tegmental Area - drug effects</subject><subject>Ventral Tegmental Area - metabolism</subject><subject>Ventral tegmentum</subject><issn>0893-7648</issn><issn>1559-1182</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1vEzEQhi1ERdPCH-CAVuLCxXQ89sbrY0kpIKWiQv04Wl7vhLpNdlNPkqr_vqZpQeLQ0xzmmXdmHiHeK_isAOwBKwRdS0CQoJxREl-JkaprJ5Vq8LUYQeO0tGPT7Io95msARAX2jdjVaFytGhiJy0keYuqrX7ShzMTVES0zMaehl9N0Q9UXugqbNOSqQKch36Seh746SkyBqTpJkapNCtXF2aFcnB5PCrO6ugv3b8XOLMyZ3j3VfXF-_PVs8l1Of377MTmcyqhtvZKq62w3i0YTKtVa0wSnY2OxLQ-gbbWzY6tdC7O6aw1EbCKG0Fo0HYLBAHpffNrmLvNwuyZe-UXiSPN56GlYs0cDbmysgaagH_9Dr4d17st1hVJ27JxTtlC4pWIemDPN_DKnRcj3XoH_o91vtfui3T9q91iGPjxFr9sFdX9Hnj0XQG8BLq3-N-V_u1-IfQA2lYrW</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Tang, Juanjuan</creator><creator>Lu, Linyu</creator><creator>Wang, Qisheng</creator><creator>Liu, Hou</creator><creator>Xue, Wenda</creator><creator>Zhou, Tong</creator><creator>Xu, Liantiao</creator><creator>Wang, Kai</creator><creator>Wu, Die</creator><creator>Wei, Fei</creator><creator>Tao, Weiwei</creator><creator>Chen, Gang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3507-1218</orcidid></search><sort><creationdate>20200701</creationdate><title>Crocin Reverses Depression-Like Behavior in Parkinson Disease Mice via VTA-mPFC Pathway</title><author>Tang, Juanjuan ; Lu, Linyu ; Wang, Qisheng ; Liu, Hou ; Xue, Wenda ; Zhou, Tong ; Xu, Liantiao ; Wang, Kai ; Wu, Die ; Wei, Fei ; Tao, Weiwei ; Chen, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-1dd7dfc43e211b748a93c872b18227b3976739b0f5db40c28c2aab724d2042a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Antidepressants</topic><topic>Behavior, Animal - drug effects</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Carotenoids - pharmacology</topic><topic>Cell Biology</topic><topic>Depression - metabolism</topic><topic>Dopamine receptors</topic><topic>Glutamate receptors</topic><topic>Male</topic><topic>Mental depression</topic><topic>Mice</topic><topic>Movement disorders</topic><topic>MPTP</topic><topic>Neural Pathways - drug effects</topic><topic>Neurobiology</topic><topic>Neurodegenerative diseases</topic><topic>Neurology</topic><topic>Neuronal Plasticity - drug effects</topic><topic>Neurons</topic><topic>Neuroplasticity</topic><topic>Neuroprotection</topic><topic>Neurosciences</topic><topic>Original Article</topic><topic>Parkinson's disease</topic><topic>Parkinsonian Disorders - metabolism</topic><topic>Postsynaptic density proteins</topic><topic>Prefrontal cortex</topic><topic>Prefrontal Cortex - drug effects</topic><topic>Prefrontal Cortex - metabolism</topic><topic>Rapamycin</topic><topic>Receptors, AMPA - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Swimming behavior</topic><topic>Synapsin</topic><topic>Synapsins - metabolism</topic><topic>Synaptic plasticity</topic><topic>TOR protein</topic><topic>Ventral Tegmental Area - drug effects</topic><topic>Ventral Tegmental Area - metabolism</topic><topic>Ventral tegmentum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Juanjuan</creatorcontrib><creatorcontrib>Lu, Linyu</creatorcontrib><creatorcontrib>Wang, Qisheng</creatorcontrib><creatorcontrib>Liu, Hou</creatorcontrib><creatorcontrib>Xue, Wenda</creatorcontrib><creatorcontrib>Zhou, Tong</creatorcontrib><creatorcontrib>Xu, Liantiao</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Wu, Die</creatorcontrib><creatorcontrib>Wei, Fei</creatorcontrib><creatorcontrib>Tao, Weiwei</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Juanjuan</au><au>Lu, Linyu</au><au>Wang, Qisheng</au><au>Liu, Hou</au><au>Xue, Wenda</au><au>Zhou, Tong</au><au>Xu, Liantiao</au><au>Wang, Kai</au><au>Wu, Die</au><au>Wei, Fei</au><au>Tao, Weiwei</au><au>Chen, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crocin Reverses Depression-Like Behavior in Parkinson Disease Mice via VTA-mPFC Pathway</atitle><jtitle>Molecular neurobiology</jtitle><stitle>Mol Neurobiol</stitle><addtitle>Mol Neurobiol</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>57</volume><issue>7</issue><spage>3158</spage><epage>3170</epage><pages>3158-3170</pages><issn>0893-7648</issn><eissn>1559-1182</eissn><abstract>Depression is a common non-motor symptom in patients with Parkinson’s disease (PD) and difficult to treat. Crocin is a natural multipotential neuroprotective compound that has been shown to elicit antidepressant activity and is promising for the therapy of neuropsychological diseases. Here, we investigated the therapeutic effect of crocin in a mouse model of Parkinson’s disease depression (PDD) and clarified the underlying mechanism. We prepared 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced subacute mouse model of PD, and found that around 60% of the model mice showed depression-like behavior, using the forced swimming test (FST). A regime of 10-day treatment of crocin alleviated the PDD symptoms. The crocin reduced the structural damage in soma volume and axon length of neurons and inhibited their spontaneous discharge in dopaminergic (DA) neurons in the ventral tegmental area (VTA). Notably, the MPTP-treated mice showed the decrease in the critical signaling for synaptic plasticity, including the proteins of PSD-95, synapsin-1, and GluR-1, in the medial prefrontal cortex (mPFC) where it receives efferent from VTA and regulates depression-like behavior. However, crocin treatment rescued the defect of the mammalian target of rapamycin (mTOR) signaling in PDD mice. Furthermore, the antidepressant action of crocin was blunted after blockade of mTOR signaling with the antagonist rapamycin. In conclusion, our study demonstrated that crocin protected the DA projection neurons in the VTA through activating mTOR, which subsequently improved the neural synaptic plasticity of mPFC, and ameliorated depression-like behavior in PD mice.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>32495180</pmid><doi>10.1007/s12035-020-01941-2</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3507-1218</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0893-7648
ispartof Molecular neurobiology, 2020-07, Vol.57 (7), p.3158-3170
issn 0893-7648
1559-1182
language eng
recordid cdi_proquest_miscellaneous_2409647408
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Animal models
Animals
Antidepressants
Behavior, Animal - drug effects
Biomedical and Life Sciences
Biomedicine
Carotenoids - pharmacology
Cell Biology
Depression - metabolism
Dopamine receptors
Glutamate receptors
Male
Mental depression
Mice
Movement disorders
MPTP
Neural Pathways - drug effects
Neurobiology
Neurodegenerative diseases
Neurology
Neuronal Plasticity - drug effects
Neurons
Neuroplasticity
Neuroprotection
Neurosciences
Original Article
Parkinson's disease
Parkinsonian Disorders - metabolism
Postsynaptic density proteins
Prefrontal cortex
Prefrontal Cortex - drug effects
Prefrontal Cortex - metabolism
Rapamycin
Receptors, AMPA - metabolism
Signal Transduction - drug effects
Swimming behavior
Synapsin
Synapsins - metabolism
Synaptic plasticity
TOR protein
Ventral Tegmental Area - drug effects
Ventral Tegmental Area - metabolism
Ventral tegmentum
title Crocin Reverses Depression-Like Behavior in Parkinson Disease Mice via VTA-mPFC Pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A53%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crocin%20Reverses%20Depression-Like%20Behavior%20in%20Parkinson%20Disease%20Mice%20via%20VTA-mPFC%20Pathway&rft.jtitle=Molecular%20neurobiology&rft.au=Tang,%20Juanjuan&rft.date=2020-07-01&rft.volume=57&rft.issue=7&rft.spage=3158&rft.epage=3170&rft.pages=3158-3170&rft.issn=0893-7648&rft.eissn=1559-1182&rft_id=info:doi/10.1007/s12035-020-01941-2&rft_dat=%3Cproquest_cross%3E2417699917%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2417699917&rft_id=info:pmid/32495180&rfr_iscdi=true