Crocin Reverses Depression-Like Behavior in Parkinson Disease Mice via VTA-mPFC Pathway
Depression is a common non-motor symptom in patients with Parkinson’s disease (PD) and difficult to treat. Crocin is a natural multipotential neuroprotective compound that has been shown to elicit antidepressant activity and is promising for the therapy of neuropsychological diseases. Here, we inves...
Gespeichert in:
Veröffentlicht in: | Molecular neurobiology 2020-07, Vol.57 (7), p.3158-3170 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3170 |
---|---|
container_issue | 7 |
container_start_page | 3158 |
container_title | Molecular neurobiology |
container_volume | 57 |
creator | Tang, Juanjuan Lu, Linyu Wang, Qisheng Liu, Hou Xue, Wenda Zhou, Tong Xu, Liantiao Wang, Kai Wu, Die Wei, Fei Tao, Weiwei Chen, Gang |
description | Depression is a common non-motor symptom in patients with Parkinson’s disease (PD) and difficult to treat. Crocin is a natural multipotential neuroprotective compound that has been shown to elicit antidepressant activity and is promising for the therapy of neuropsychological diseases. Here, we investigated the therapeutic effect of crocin in a mouse model of Parkinson’s disease depression (PDD) and clarified the underlying mechanism. We prepared 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced subacute mouse model of PD, and found that around 60% of the model mice showed depression-like behavior, using the forced swimming test (FST). A regime of 10-day treatment of crocin alleviated the PDD symptoms. The crocin reduced the structural damage in soma volume and axon length of neurons and inhibited their spontaneous discharge in dopaminergic (DA) neurons in the ventral tegmental area (VTA). Notably, the MPTP-treated mice showed the decrease in the critical signaling for synaptic plasticity, including the proteins of PSD-95, synapsin-1, and GluR-1, in the medial prefrontal cortex (mPFC) where it receives efferent from VTA and regulates depression-like behavior. However, crocin treatment rescued the defect of the mammalian target of rapamycin (mTOR) signaling in PDD mice. Furthermore, the antidepressant action of crocin was blunted after blockade of mTOR signaling with the antagonist rapamycin. In conclusion, our study demonstrated that crocin protected the DA projection neurons in the VTA through activating mTOR, which subsequently improved the neural synaptic plasticity of mPFC, and ameliorated depression-like behavior in PD mice. |
doi_str_mv | 10.1007/s12035-020-01941-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2409647408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2417699917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-1dd7dfc43e211b748a93c872b18227b3976739b0f5db40c28c2aab724d2042a03</originalsourceid><addsrcrecordid>eNp9kE1vEzEQhi1ERdPCH-CAVuLCxXQ89sbrY0kpIKWiQv04Wl7vhLpNdlNPkqr_vqZpQeLQ0xzmmXdmHiHeK_isAOwBKwRdS0CQoJxREl-JkaprJ5Vq8LUYQeO0tGPT7Io95msARAX2jdjVaFytGhiJy0keYuqrX7ShzMTVES0zMaehl9N0Q9UXugqbNOSqQKch36Seh746SkyBqTpJkapNCtXF2aFcnB5PCrO6ugv3b8XOLMyZ3j3VfXF-_PVs8l1Of377MTmcyqhtvZKq62w3i0YTKtVa0wSnY2OxLQ-gbbWzY6tdC7O6aw1EbCKG0Fo0HYLBAHpffNrmLvNwuyZe-UXiSPN56GlYs0cDbmysgaagH_9Dr4d17st1hVJ27JxTtlC4pWIemDPN_DKnRcj3XoH_o91vtfui3T9q91iGPjxFr9sFdX9Hnj0XQG8BLq3-N-V_u1-IfQA2lYrW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417699917</pqid></control><display><type>article</type><title>Crocin Reverses Depression-Like Behavior in Parkinson Disease Mice via VTA-mPFC Pathway</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Tang, Juanjuan ; Lu, Linyu ; Wang, Qisheng ; Liu, Hou ; Xue, Wenda ; Zhou, Tong ; Xu, Liantiao ; Wang, Kai ; Wu, Die ; Wei, Fei ; Tao, Weiwei ; Chen, Gang</creator><creatorcontrib>Tang, Juanjuan ; Lu, Linyu ; Wang, Qisheng ; Liu, Hou ; Xue, Wenda ; Zhou, Tong ; Xu, Liantiao ; Wang, Kai ; Wu, Die ; Wei, Fei ; Tao, Weiwei ; Chen, Gang</creatorcontrib><description>Depression is a common non-motor symptom in patients with Parkinson’s disease (PD) and difficult to treat. Crocin is a natural multipotential neuroprotective compound that has been shown to elicit antidepressant activity and is promising for the therapy of neuropsychological diseases. Here, we investigated the therapeutic effect of crocin in a mouse model of Parkinson’s disease depression (PDD) and clarified the underlying mechanism. We prepared 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced subacute mouse model of PD, and found that around 60% of the model mice showed depression-like behavior, using the forced swimming test (FST). A regime of 10-day treatment of crocin alleviated the PDD symptoms. The crocin reduced the structural damage in soma volume and axon length of neurons and inhibited their spontaneous discharge in dopaminergic (DA) neurons in the ventral tegmental area (VTA). Notably, the MPTP-treated mice showed the decrease in the critical signaling for synaptic plasticity, including the proteins of PSD-95, synapsin-1, and GluR-1, in the medial prefrontal cortex (mPFC) where it receives efferent from VTA and regulates depression-like behavior. However, crocin treatment rescued the defect of the mammalian target of rapamycin (mTOR) signaling in PDD mice. Furthermore, the antidepressant action of crocin was blunted after blockade of mTOR signaling with the antagonist rapamycin. In conclusion, our study demonstrated that crocin protected the DA projection neurons in the VTA through activating mTOR, which subsequently improved the neural synaptic plasticity of mPFC, and ameliorated depression-like behavior in PD mice.</description><identifier>ISSN: 0893-7648</identifier><identifier>EISSN: 1559-1182</identifier><identifier>DOI: 10.1007/s12035-020-01941-2</identifier><identifier>PMID: 32495180</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animal models ; Animals ; Antidepressants ; Behavior, Animal - drug effects ; Biomedical and Life Sciences ; Biomedicine ; Carotenoids - pharmacology ; Cell Biology ; Depression - metabolism ; Dopamine receptors ; Glutamate receptors ; Male ; Mental depression ; Mice ; Movement disorders ; MPTP ; Neural Pathways - drug effects ; Neurobiology ; Neurodegenerative diseases ; Neurology ; Neuronal Plasticity - drug effects ; Neurons ; Neuroplasticity ; Neuroprotection ; Neurosciences ; Original Article ; Parkinson's disease ; Parkinsonian Disorders - metabolism ; Postsynaptic density proteins ; Prefrontal cortex ; Prefrontal Cortex - drug effects ; Prefrontal Cortex - metabolism ; Rapamycin ; Receptors, AMPA - metabolism ; Signal Transduction - drug effects ; Swimming behavior ; Synapsin ; Synapsins - metabolism ; Synaptic plasticity ; TOR protein ; Ventral Tegmental Area - drug effects ; Ventral Tegmental Area - metabolism ; Ventral tegmentum</subject><ispartof>Molecular neurobiology, 2020-07, Vol.57 (7), p.3158-3170</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-1dd7dfc43e211b748a93c872b18227b3976739b0f5db40c28c2aab724d2042a03</citedby><cites>FETCH-LOGICAL-c375t-1dd7dfc43e211b748a93c872b18227b3976739b0f5db40c28c2aab724d2042a03</cites><orcidid>0000-0002-3507-1218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12035-020-01941-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12035-020-01941-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32495180$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Juanjuan</creatorcontrib><creatorcontrib>Lu, Linyu</creatorcontrib><creatorcontrib>Wang, Qisheng</creatorcontrib><creatorcontrib>Liu, Hou</creatorcontrib><creatorcontrib>Xue, Wenda</creatorcontrib><creatorcontrib>Zhou, Tong</creatorcontrib><creatorcontrib>Xu, Liantiao</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Wu, Die</creatorcontrib><creatorcontrib>Wei, Fei</creatorcontrib><creatorcontrib>Tao, Weiwei</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><title>Crocin Reverses Depression-Like Behavior in Parkinson Disease Mice via VTA-mPFC Pathway</title><title>Molecular neurobiology</title><addtitle>Mol Neurobiol</addtitle><addtitle>Mol Neurobiol</addtitle><description>Depression is a common non-motor symptom in patients with Parkinson’s disease (PD) and difficult to treat. Crocin is a natural multipotential neuroprotective compound that has been shown to elicit antidepressant activity and is promising for the therapy of neuropsychological diseases. Here, we investigated the therapeutic effect of crocin in a mouse model of Parkinson’s disease depression (PDD) and clarified the underlying mechanism. We prepared 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced subacute mouse model of PD, and found that around 60% of the model mice showed depression-like behavior, using the forced swimming test (FST). A regime of 10-day treatment of crocin alleviated the PDD symptoms. The crocin reduced the structural damage in soma volume and axon length of neurons and inhibited their spontaneous discharge in dopaminergic (DA) neurons in the ventral tegmental area (VTA). Notably, the MPTP-treated mice showed the decrease in the critical signaling for synaptic plasticity, including the proteins of PSD-95, synapsin-1, and GluR-1, in the medial prefrontal cortex (mPFC) where it receives efferent from VTA and regulates depression-like behavior. However, crocin treatment rescued the defect of the mammalian target of rapamycin (mTOR) signaling in PDD mice. Furthermore, the antidepressant action of crocin was blunted after blockade of mTOR signaling with the antagonist rapamycin. In conclusion, our study demonstrated that crocin protected the DA projection neurons in the VTA through activating mTOR, which subsequently improved the neural synaptic plasticity of mPFC, and ameliorated depression-like behavior in PD mice.</description><subject>Animal models</subject><subject>Animals</subject><subject>Antidepressants</subject><subject>Behavior, Animal - drug effects</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Carotenoids - pharmacology</subject><subject>Cell Biology</subject><subject>Depression - metabolism</subject><subject>Dopamine receptors</subject><subject>Glutamate receptors</subject><subject>Male</subject><subject>Mental depression</subject><subject>Mice</subject><subject>Movement disorders</subject><subject>MPTP</subject><subject>Neural Pathways - drug effects</subject><subject>Neurobiology</subject><subject>Neurodegenerative diseases</subject><subject>Neurology</subject><subject>Neuronal Plasticity - drug effects</subject><subject>Neurons</subject><subject>Neuroplasticity</subject><subject>Neuroprotection</subject><subject>Neurosciences</subject><subject>Original Article</subject><subject>Parkinson's disease</subject><subject>Parkinsonian Disorders - metabolism</subject><subject>Postsynaptic density proteins</subject><subject>Prefrontal cortex</subject><subject>Prefrontal Cortex - drug effects</subject><subject>Prefrontal Cortex - metabolism</subject><subject>Rapamycin</subject><subject>Receptors, AMPA - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Swimming behavior</subject><subject>Synapsin</subject><subject>Synapsins - metabolism</subject><subject>Synaptic plasticity</subject><subject>TOR protein</subject><subject>Ventral Tegmental Area - drug effects</subject><subject>Ventral Tegmental Area - metabolism</subject><subject>Ventral tegmentum</subject><issn>0893-7648</issn><issn>1559-1182</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1vEzEQhi1ERdPCH-CAVuLCxXQ89sbrY0kpIKWiQv04Wl7vhLpNdlNPkqr_vqZpQeLQ0xzmmXdmHiHeK_isAOwBKwRdS0CQoJxREl-JkaprJ5Vq8LUYQeO0tGPT7Io95msARAX2jdjVaFytGhiJy0keYuqrX7ShzMTVES0zMaehl9N0Q9UXugqbNOSqQKch36Seh746SkyBqTpJkapNCtXF2aFcnB5PCrO6ugv3b8XOLMyZ3j3VfXF-_PVs8l1Of377MTmcyqhtvZKq62w3i0YTKtVa0wSnY2OxLQ-gbbWzY6tdC7O6aw1EbCKG0Fo0HYLBAHpffNrmLvNwuyZe-UXiSPN56GlYs0cDbmysgaagH_9Dr4d17st1hVJ27JxTtlC4pWIemDPN_DKnRcj3XoH_o91vtfui3T9q91iGPjxFr9sFdX9Hnj0XQG8BLq3-N-V_u1-IfQA2lYrW</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Tang, Juanjuan</creator><creator>Lu, Linyu</creator><creator>Wang, Qisheng</creator><creator>Liu, Hou</creator><creator>Xue, Wenda</creator><creator>Zhou, Tong</creator><creator>Xu, Liantiao</creator><creator>Wang, Kai</creator><creator>Wu, Die</creator><creator>Wei, Fei</creator><creator>Tao, Weiwei</creator><creator>Chen, Gang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3507-1218</orcidid></search><sort><creationdate>20200701</creationdate><title>Crocin Reverses Depression-Like Behavior in Parkinson Disease Mice via VTA-mPFC Pathway</title><author>Tang, Juanjuan ; Lu, Linyu ; Wang, Qisheng ; Liu, Hou ; Xue, Wenda ; Zhou, Tong ; Xu, Liantiao ; Wang, Kai ; Wu, Die ; Wei, Fei ; Tao, Weiwei ; Chen, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-1dd7dfc43e211b748a93c872b18227b3976739b0f5db40c28c2aab724d2042a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Antidepressants</topic><topic>Behavior, Animal - drug effects</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Carotenoids - pharmacology</topic><topic>Cell Biology</topic><topic>Depression - metabolism</topic><topic>Dopamine receptors</topic><topic>Glutamate receptors</topic><topic>Male</topic><topic>Mental depression</topic><topic>Mice</topic><topic>Movement disorders</topic><topic>MPTP</topic><topic>Neural Pathways - drug effects</topic><topic>Neurobiology</topic><topic>Neurodegenerative diseases</topic><topic>Neurology</topic><topic>Neuronal Plasticity - drug effects</topic><topic>Neurons</topic><topic>Neuroplasticity</topic><topic>Neuroprotection</topic><topic>Neurosciences</topic><topic>Original Article</topic><topic>Parkinson's disease</topic><topic>Parkinsonian Disorders - metabolism</topic><topic>Postsynaptic density proteins</topic><topic>Prefrontal cortex</topic><topic>Prefrontal Cortex - drug effects</topic><topic>Prefrontal Cortex - metabolism</topic><topic>Rapamycin</topic><topic>Receptors, AMPA - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Swimming behavior</topic><topic>Synapsin</topic><topic>Synapsins - metabolism</topic><topic>Synaptic plasticity</topic><topic>TOR protein</topic><topic>Ventral Tegmental Area - drug effects</topic><topic>Ventral Tegmental Area - metabolism</topic><topic>Ventral tegmentum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Juanjuan</creatorcontrib><creatorcontrib>Lu, Linyu</creatorcontrib><creatorcontrib>Wang, Qisheng</creatorcontrib><creatorcontrib>Liu, Hou</creatorcontrib><creatorcontrib>Xue, Wenda</creatorcontrib><creatorcontrib>Zhou, Tong</creatorcontrib><creatorcontrib>Xu, Liantiao</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Wu, Die</creatorcontrib><creatorcontrib>Wei, Fei</creatorcontrib><creatorcontrib>Tao, Weiwei</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Juanjuan</au><au>Lu, Linyu</au><au>Wang, Qisheng</au><au>Liu, Hou</au><au>Xue, Wenda</au><au>Zhou, Tong</au><au>Xu, Liantiao</au><au>Wang, Kai</au><au>Wu, Die</au><au>Wei, Fei</au><au>Tao, Weiwei</au><au>Chen, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crocin Reverses Depression-Like Behavior in Parkinson Disease Mice via VTA-mPFC Pathway</atitle><jtitle>Molecular neurobiology</jtitle><stitle>Mol Neurobiol</stitle><addtitle>Mol Neurobiol</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>57</volume><issue>7</issue><spage>3158</spage><epage>3170</epage><pages>3158-3170</pages><issn>0893-7648</issn><eissn>1559-1182</eissn><abstract>Depression is a common non-motor symptom in patients with Parkinson’s disease (PD) and difficult to treat. Crocin is a natural multipotential neuroprotective compound that has been shown to elicit antidepressant activity and is promising for the therapy of neuropsychological diseases. Here, we investigated the therapeutic effect of crocin in a mouse model of Parkinson’s disease depression (PDD) and clarified the underlying mechanism. We prepared 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced subacute mouse model of PD, and found that around 60% of the model mice showed depression-like behavior, using the forced swimming test (FST). A regime of 10-day treatment of crocin alleviated the PDD symptoms. The crocin reduced the structural damage in soma volume and axon length of neurons and inhibited their spontaneous discharge in dopaminergic (DA) neurons in the ventral tegmental area (VTA). Notably, the MPTP-treated mice showed the decrease in the critical signaling for synaptic plasticity, including the proteins of PSD-95, synapsin-1, and GluR-1, in the medial prefrontal cortex (mPFC) where it receives efferent from VTA and regulates depression-like behavior. However, crocin treatment rescued the defect of the mammalian target of rapamycin (mTOR) signaling in PDD mice. Furthermore, the antidepressant action of crocin was blunted after blockade of mTOR signaling with the antagonist rapamycin. In conclusion, our study demonstrated that crocin protected the DA projection neurons in the VTA through activating mTOR, which subsequently improved the neural synaptic plasticity of mPFC, and ameliorated depression-like behavior in PD mice.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>32495180</pmid><doi>10.1007/s12035-020-01941-2</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3507-1218</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-7648 |
ispartof | Molecular neurobiology, 2020-07, Vol.57 (7), p.3158-3170 |
issn | 0893-7648 1559-1182 |
language | eng |
recordid | cdi_proquest_miscellaneous_2409647408 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Animal models Animals Antidepressants Behavior, Animal - drug effects Biomedical and Life Sciences Biomedicine Carotenoids - pharmacology Cell Biology Depression - metabolism Dopamine receptors Glutamate receptors Male Mental depression Mice Movement disorders MPTP Neural Pathways - drug effects Neurobiology Neurodegenerative diseases Neurology Neuronal Plasticity - drug effects Neurons Neuroplasticity Neuroprotection Neurosciences Original Article Parkinson's disease Parkinsonian Disorders - metabolism Postsynaptic density proteins Prefrontal cortex Prefrontal Cortex - drug effects Prefrontal Cortex - metabolism Rapamycin Receptors, AMPA - metabolism Signal Transduction - drug effects Swimming behavior Synapsin Synapsins - metabolism Synaptic plasticity TOR protein Ventral Tegmental Area - drug effects Ventral Tegmental Area - metabolism Ventral tegmentum |
title | Crocin Reverses Depression-Like Behavior in Parkinson Disease Mice via VTA-mPFC Pathway |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A53%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crocin%20Reverses%20Depression-Like%20Behavior%20in%20Parkinson%20Disease%20Mice%20via%20VTA-mPFC%20Pathway&rft.jtitle=Molecular%20neurobiology&rft.au=Tang,%20Juanjuan&rft.date=2020-07-01&rft.volume=57&rft.issue=7&rft.spage=3158&rft.epage=3170&rft.pages=3158-3170&rft.issn=0893-7648&rft.eissn=1559-1182&rft_id=info:doi/10.1007/s12035-020-01941-2&rft_dat=%3Cproquest_cross%3E2417699917%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2417699917&rft_id=info:pmid/32495180&rfr_iscdi=true |