Flagellar nanorobot with kinetic behavior investigation and 3D motion

Wirelessly controlled nanorobots have the potential to perform highly precise maneuvers within complex in vitro and in vivo environments. Flagellar nanorobots will be useful in a variety of biomedical applications, however, to date there has been little effort to investigate essential kinetic behavi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2020-06, Vol.12 (22), p.12154-12164
Hauptverfasser: Tang, Jiannan, Rogowski, Louis William, Zhang, Xiao, Kim, Min Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12164
container_issue 22
container_start_page 12154
container_title Nanoscale
container_volume 12
creator Tang, Jiannan
Rogowski, Louis William
Zhang, Xiao
Kim, Min Jun
description Wirelessly controlled nanorobots have the potential to perform highly precise maneuvers within complex in vitro and in vivo environments. Flagellar nanorobots will be useful in a variety of biomedical applications, however, to date there has been little effort to investigate essential kinetic behavior changes related to the geometric properties of the nanorobot and effects imparted to it by nearby boundaries. Flagellar nanorobots are composed of an avidin-coated magnetic nanoparticle head (MH) and a single biotin-tipped repolymerized flagellum that are driven by a wirelessly generated rotating magnetic field. Nanorobots with different MHs and flagellar lengths were manually guided to perform complex swimming trajectories under both bright-field and fluorescence microscopy visualizations. The experimental results show that rotational frequency, handedness of rotation direction, MH size, flagellar length, and distance to the bottom boundary significantly affect the kinematics of the nanorobot. The results reported herein summarize fundamental research that will be used for the design specifications necessary for optimizing the application of helical nanorobotic devices for use in delivery of therapeutic and imaging agents. Additionally, robotic nanoswimmers were successfully navigated and tracked in 3D using quantitative defocusing, which will significantly improve the efficiency, function, and application of the flagellar nanorobot. Wirelessly controlled nanorobots have the potential to perform highly precise maneuvers within complex in vitro and in vivo environments.
doi_str_mv 10.1039/d0nr02496a
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2409192692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409192692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-694930495431e2c534542dec0632031e59680e02937f4c4845f23f44878d01c73</originalsourceid><addsrcrecordid>eNp90U1LAzEQBuAgitbqxbuy4kWE6iSZ_chRbKtCURA9L2k2W1PbpCbbiv_e1NYKHjzl62FmeEPIEYVLClxcVWA9MBSZ3CItBggdznO2vdlnuEf2QxgDZIJnfJfs8agBc9oivf5EjvRkIn1ipXXeDV2TfJjmNXkzVjdGJUP9KhfG-cTYhQ6NGcnGOJtIWyW8m0zd8nRAdmo5CfpwvbbJS7_3fHPXGTze3t9cDzoq9m06mUDBAUWKnGqmUo4pskoryDiDeJWKrAANTPC8RoUFpjXjNWKRFxVQlfM2OV_VnXn3Po_TlFMT1HJ8q908lAxBUMEywSI9-0PHbu5tnC4qSrHgSEVUFyulvAvB67qceTOV_rOkUC7DLbvw8PQd7nXEJ-uS8-FUVxv6k2YEpyvgg9q8_v5OOavqaI7_M_wLkPSGjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2411483419</pqid></control><display><type>article</type><title>Flagellar nanorobot with kinetic behavior investigation and 3D motion</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Tang, Jiannan ; Rogowski, Louis William ; Zhang, Xiao ; Kim, Min Jun</creator><creatorcontrib>Tang, Jiannan ; Rogowski, Louis William ; Zhang, Xiao ; Kim, Min Jun</creatorcontrib><description>Wirelessly controlled nanorobots have the potential to perform highly precise maneuvers within complex in vitro and in vivo environments. Flagellar nanorobots will be useful in a variety of biomedical applications, however, to date there has been little effort to investigate essential kinetic behavior changes related to the geometric properties of the nanorobot and effects imparted to it by nearby boundaries. Flagellar nanorobots are composed of an avidin-coated magnetic nanoparticle head (MH) and a single biotin-tipped repolymerized flagellum that are driven by a wirelessly generated rotating magnetic field. Nanorobots with different MHs and flagellar lengths were manually guided to perform complex swimming trajectories under both bright-field and fluorescence microscopy visualizations. The experimental results show that rotational frequency, handedness of rotation direction, MH size, flagellar length, and distance to the bottom boundary significantly affect the kinematics of the nanorobot. The results reported herein summarize fundamental research that will be used for the design specifications necessary for optimizing the application of helical nanorobotic devices for use in delivery of therapeutic and imaging agents. Additionally, robotic nanoswimmers were successfully navigated and tracked in 3D using quantitative defocusing, which will significantly improve the efficiency, function, and application of the flagellar nanorobot. Wirelessly controlled nanorobots have the potential to perform highly precise maneuvers within complex in vitro and in vivo environments.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d0nr02496a</identifier><identifier>PMID: 32490471</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Biomechanical Phenomena ; Biomedical materials ; Biotin ; Chemical compounds ; Defocusing ; Design optimization ; Design specifications ; Flagella ; Fluorescence ; Kinematics ; Kinetics ; Maneuvers ; Nanoparticles ; Pharmacology ; Reagents ; Robotics ; Rotation ; Swimming ; Three dimensional motion</subject><ispartof>Nanoscale, 2020-06, Vol.12 (22), p.12154-12164</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-694930495431e2c534542dec0632031e59680e02937f4c4845f23f44878d01c73</citedby><cites>FETCH-LOGICAL-c363t-694930495431e2c534542dec0632031e59680e02937f4c4845f23f44878d01c73</cites><orcidid>0000-0002-0819-1644 ; 0000-0001-6640-6407 ; 0000-0002-0444-6937 ; 0000-0002-7623-5573</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32490471$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Jiannan</creatorcontrib><creatorcontrib>Rogowski, Louis William</creatorcontrib><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>Kim, Min Jun</creatorcontrib><title>Flagellar nanorobot with kinetic behavior investigation and 3D motion</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Wirelessly controlled nanorobots have the potential to perform highly precise maneuvers within complex in vitro and in vivo environments. Flagellar nanorobots will be useful in a variety of biomedical applications, however, to date there has been little effort to investigate essential kinetic behavior changes related to the geometric properties of the nanorobot and effects imparted to it by nearby boundaries. Flagellar nanorobots are composed of an avidin-coated magnetic nanoparticle head (MH) and a single biotin-tipped repolymerized flagellum that are driven by a wirelessly generated rotating magnetic field. Nanorobots with different MHs and flagellar lengths were manually guided to perform complex swimming trajectories under both bright-field and fluorescence microscopy visualizations. The experimental results show that rotational frequency, handedness of rotation direction, MH size, flagellar length, and distance to the bottom boundary significantly affect the kinematics of the nanorobot. The results reported herein summarize fundamental research that will be used for the design specifications necessary for optimizing the application of helical nanorobotic devices for use in delivery of therapeutic and imaging agents. Additionally, robotic nanoswimmers were successfully navigated and tracked in 3D using quantitative defocusing, which will significantly improve the efficiency, function, and application of the flagellar nanorobot. Wirelessly controlled nanorobots have the potential to perform highly precise maneuvers within complex in vitro and in vivo environments.</description><subject>Biomechanical Phenomena</subject><subject>Biomedical materials</subject><subject>Biotin</subject><subject>Chemical compounds</subject><subject>Defocusing</subject><subject>Design optimization</subject><subject>Design specifications</subject><subject>Flagella</subject><subject>Fluorescence</subject><subject>Kinematics</subject><subject>Kinetics</subject><subject>Maneuvers</subject><subject>Nanoparticles</subject><subject>Pharmacology</subject><subject>Reagents</subject><subject>Robotics</subject><subject>Rotation</subject><subject>Swimming</subject><subject>Three dimensional motion</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90U1LAzEQBuAgitbqxbuy4kWE6iSZ_chRbKtCURA9L2k2W1PbpCbbiv_e1NYKHjzl62FmeEPIEYVLClxcVWA9MBSZ3CItBggdznO2vdlnuEf2QxgDZIJnfJfs8agBc9oivf5EjvRkIn1ipXXeDV2TfJjmNXkzVjdGJUP9KhfG-cTYhQ6NGcnGOJtIWyW8m0zd8nRAdmo5CfpwvbbJS7_3fHPXGTze3t9cDzoq9m06mUDBAUWKnGqmUo4pskoryDiDeJWKrAANTPC8RoUFpjXjNWKRFxVQlfM2OV_VnXn3Po_TlFMT1HJ8q908lAxBUMEywSI9-0PHbu5tnC4qSrHgSEVUFyulvAvB67qceTOV_rOkUC7DLbvw8PQd7nXEJ-uS8-FUVxv6k2YEpyvgg9q8_v5OOavqaI7_M_wLkPSGjQ</recordid><startdate>20200611</startdate><enddate>20200611</enddate><creator>Tang, Jiannan</creator><creator>Rogowski, Louis William</creator><creator>Zhang, Xiao</creator><creator>Kim, Min Jun</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0819-1644</orcidid><orcidid>https://orcid.org/0000-0001-6640-6407</orcidid><orcidid>https://orcid.org/0000-0002-0444-6937</orcidid><orcidid>https://orcid.org/0000-0002-7623-5573</orcidid></search><sort><creationdate>20200611</creationdate><title>Flagellar nanorobot with kinetic behavior investigation and 3D motion</title><author>Tang, Jiannan ; Rogowski, Louis William ; Zhang, Xiao ; Kim, Min Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-694930495431e2c534542dec0632031e59680e02937f4c4845f23f44878d01c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomechanical Phenomena</topic><topic>Biomedical materials</topic><topic>Biotin</topic><topic>Chemical compounds</topic><topic>Defocusing</topic><topic>Design optimization</topic><topic>Design specifications</topic><topic>Flagella</topic><topic>Fluorescence</topic><topic>Kinematics</topic><topic>Kinetics</topic><topic>Maneuvers</topic><topic>Nanoparticles</topic><topic>Pharmacology</topic><topic>Reagents</topic><topic>Robotics</topic><topic>Rotation</topic><topic>Swimming</topic><topic>Three dimensional motion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Jiannan</creatorcontrib><creatorcontrib>Rogowski, Louis William</creatorcontrib><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>Kim, Min Jun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Jiannan</au><au>Rogowski, Louis William</au><au>Zhang, Xiao</au><au>Kim, Min Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flagellar nanorobot with kinetic behavior investigation and 3D motion</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2020-06-11</date><risdate>2020</risdate><volume>12</volume><issue>22</issue><spage>12154</spage><epage>12164</epage><pages>12154-12164</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Wirelessly controlled nanorobots have the potential to perform highly precise maneuvers within complex in vitro and in vivo environments. Flagellar nanorobots will be useful in a variety of biomedical applications, however, to date there has been little effort to investigate essential kinetic behavior changes related to the geometric properties of the nanorobot and effects imparted to it by nearby boundaries. Flagellar nanorobots are composed of an avidin-coated magnetic nanoparticle head (MH) and a single biotin-tipped repolymerized flagellum that are driven by a wirelessly generated rotating magnetic field. Nanorobots with different MHs and flagellar lengths were manually guided to perform complex swimming trajectories under both bright-field and fluorescence microscopy visualizations. The experimental results show that rotational frequency, handedness of rotation direction, MH size, flagellar length, and distance to the bottom boundary significantly affect the kinematics of the nanorobot. The results reported herein summarize fundamental research that will be used for the design specifications necessary for optimizing the application of helical nanorobotic devices for use in delivery of therapeutic and imaging agents. Additionally, robotic nanoswimmers were successfully navigated and tracked in 3D using quantitative defocusing, which will significantly improve the efficiency, function, and application of the flagellar nanorobot. Wirelessly controlled nanorobots have the potential to perform highly precise maneuvers within complex in vitro and in vivo environments.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>32490471</pmid><doi>10.1039/d0nr02496a</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0819-1644</orcidid><orcidid>https://orcid.org/0000-0001-6640-6407</orcidid><orcidid>https://orcid.org/0000-0002-0444-6937</orcidid><orcidid>https://orcid.org/0000-0002-7623-5573</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2020-06, Vol.12 (22), p.12154-12164
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_2409192692
source MEDLINE; Royal Society Of Chemistry Journals 2008-
subjects Biomechanical Phenomena
Biomedical materials
Biotin
Chemical compounds
Defocusing
Design optimization
Design specifications
Flagella
Fluorescence
Kinematics
Kinetics
Maneuvers
Nanoparticles
Pharmacology
Reagents
Robotics
Rotation
Swimming
Three dimensional motion
title Flagellar nanorobot with kinetic behavior investigation and 3D motion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A18%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flagellar%20nanorobot%20with%20kinetic%20behavior%20investigation%20and%203D%20motion&rft.jtitle=Nanoscale&rft.au=Tang,%20Jiannan&rft.date=2020-06-11&rft.volume=12&rft.issue=22&rft.spage=12154&rft.epage=12164&rft.pages=12154-12164&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d0nr02496a&rft_dat=%3Cproquest_pubme%3E2409192692%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2411483419&rft_id=info:pmid/32490471&rfr_iscdi=true