Prediction by Convolutional Neural Networks of CO2/N2 Selectivity in Porous Carbons from N2 Adsorption Isotherm at 77 K

Porous carbons are an important class of porous materials with many applications, including gas separation. An N2 adsorption isotherm at 77 K is the most widely used approach to characterize porosity. Conventionally, textual properties such as surface area and pore volumes are derived from the N2 ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2020-10, Vol.59 (44), p.19645-19648
Hauptverfasser: Wang, Song, Li, Yi, Dai, Sheng, Jiang, De‐en
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19648
container_issue 44
container_start_page 19645
container_title Angewandte Chemie International Edition
container_volume 59
creator Wang, Song
Li, Yi
Dai, Sheng
Jiang, De‐en
description Porous carbons are an important class of porous materials with many applications, including gas separation. An N2 adsorption isotherm at 77 K is the most widely used approach to characterize porosity. Conventionally, textual properties such as surface area and pore volumes are derived from the N2 adsorption isotherm at 77 K by fitting it to adsorption theory and then correlating it to gas separation performance (uptake and selectivity). Here the N2 isotherm at 77 K was used directly as input (representing feature descriptors for the porosity) to train convolutional neural networks to predict gas separation performance (using CO2/N2 as a test case) for porous carbons. The porosity space for porous carbons was explored for higher CO2/N2 selectivity. Porous carbons with a bimodal pore‐size distribution of well‐separated mesopores (3–7 nm) and micropores (
doi_str_mv 10.1002/anie.202005931
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2409192589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409192589</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2561-9c86ccffb2f8cb6af0192ea20fc3ac62c945b7d423d734ffa3358effa826ce833</originalsourceid><addsrcrecordid>eNo9kD1PwzAYhC0EEqWwMntkSeuPfDhjFRWoqNpKwGw5jg2GJC522iobK3-TX4Lbok73nvTc6dUBcIvRCCNExqI1akQQQSjJKT4DA5wQHNEso-fhjimNMpbgS3Dl_UfgGUPpAPQrpyojO2NbWPawsO3W1pu9FTVcqI07SLez7tNDq2GxJOMFgc-qViG0NV0PTQtX1tmNh4VwpW091M42MFCTylu3PnTPvO3elWug6GCW_X7_PF2DCy1qr27-dQhe76cvxWM0Xz7Misk8eiNJiqNcslRKrUuimSxToRHOiRIEaUmFTInM46TMqpjQKqOx1oLShKmgjKRSMUqH4O7Yu3b2a6N8xxvjpapr0arwNCcxykNlwvKA5kd0Z2rV87UzjXA9x4jvB-b7gflpYD5ZzKYnR_8ANb5zng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409192589</pqid></control><display><type>article</type><title>Prediction by Convolutional Neural Networks of CO2/N2 Selectivity in Porous Carbons from N2 Adsorption Isotherm at 77 K</title><source>Access via Wiley Online Library</source><creator>Wang, Song ; Li, Yi ; Dai, Sheng ; Jiang, De‐en</creator><creatorcontrib>Wang, Song ; Li, Yi ; Dai, Sheng ; Jiang, De‐en</creatorcontrib><description>Porous carbons are an important class of porous materials with many applications, including gas separation. An N2 adsorption isotherm at 77 K is the most widely used approach to characterize porosity. Conventionally, textual properties such as surface area and pore volumes are derived from the N2 adsorption isotherm at 77 K by fitting it to adsorption theory and then correlating it to gas separation performance (uptake and selectivity). Here the N2 isotherm at 77 K was used directly as input (representing feature descriptors for the porosity) to train convolutional neural networks to predict gas separation performance (using CO2/N2 as a test case) for porous carbons. The porosity space for porous carbons was explored for higher CO2/N2 selectivity. Porous carbons with a bimodal pore‐size distribution of well‐separated mesopores (3–7 nm) and micropores (&lt;2 nm) were found to be most promising. This work will be useful in guiding experimental research of porous carbons with the desired porosity for gas separation and other applications. Training set: The 77K N2 adsorption isotherms of porous carbons are used to train convolutional neural networks for prediction of gas separation performance. The approach allows exploration of a much broader porosity space to predict promising ones for higher CO2/N2 selectivity.</description><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202005931</identifier><language>eng</language><subject>adsorption ; machine learning ; materials science ; neural networks ; porous materials</subject><ispartof>Angewandte Chemie International Edition, 2020-10, Vol.59 (44), p.19645-19648</ispartof><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8046-3931 ; 0000-0002-5222-3674 ; 0000-0001-5167-0731</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202005931$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202005931$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wang, Song</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Dai, Sheng</creatorcontrib><creatorcontrib>Jiang, De‐en</creatorcontrib><title>Prediction by Convolutional Neural Networks of CO2/N2 Selectivity in Porous Carbons from N2 Adsorption Isotherm at 77 K</title><title>Angewandte Chemie International Edition</title><description>Porous carbons are an important class of porous materials with many applications, including gas separation. An N2 adsorption isotherm at 77 K is the most widely used approach to characterize porosity. Conventionally, textual properties such as surface area and pore volumes are derived from the N2 adsorption isotherm at 77 K by fitting it to adsorption theory and then correlating it to gas separation performance (uptake and selectivity). Here the N2 isotherm at 77 K was used directly as input (representing feature descriptors for the porosity) to train convolutional neural networks to predict gas separation performance (using CO2/N2 as a test case) for porous carbons. The porosity space for porous carbons was explored for higher CO2/N2 selectivity. Porous carbons with a bimodal pore‐size distribution of well‐separated mesopores (3–7 nm) and micropores (&lt;2 nm) were found to be most promising. This work will be useful in guiding experimental research of porous carbons with the desired porosity for gas separation and other applications. Training set: The 77K N2 adsorption isotherms of porous carbons are used to train convolutional neural networks for prediction of gas separation performance. The approach allows exploration of a much broader porosity space to predict promising ones for higher CO2/N2 selectivity.</description><subject>adsorption</subject><subject>machine learning</subject><subject>materials science</subject><subject>neural networks</subject><subject>porous materials</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAYhC0EEqWwMntkSeuPfDhjFRWoqNpKwGw5jg2GJC522iobK3-TX4Lbok73nvTc6dUBcIvRCCNExqI1akQQQSjJKT4DA5wQHNEso-fhjimNMpbgS3Dl_UfgGUPpAPQrpyojO2NbWPawsO3W1pu9FTVcqI07SLez7tNDq2GxJOMFgc-qViG0NV0PTQtX1tmNh4VwpW091M42MFCTylu3PnTPvO3elWug6GCW_X7_PF2DCy1qr27-dQhe76cvxWM0Xz7Misk8eiNJiqNcslRKrUuimSxToRHOiRIEaUmFTInM46TMqpjQKqOx1oLShKmgjKRSMUqH4O7Yu3b2a6N8xxvjpapr0arwNCcxykNlwvKA5kd0Z2rV87UzjXA9x4jvB-b7gflpYD5ZzKYnR_8ANb5zng</recordid><startdate>20201026</startdate><enddate>20201026</enddate><creator>Wang, Song</creator><creator>Li, Yi</creator><creator>Dai, Sheng</creator><creator>Jiang, De‐en</creator><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8046-3931</orcidid><orcidid>https://orcid.org/0000-0002-5222-3674</orcidid><orcidid>https://orcid.org/0000-0001-5167-0731</orcidid></search><sort><creationdate>20201026</creationdate><title>Prediction by Convolutional Neural Networks of CO2/N2 Selectivity in Porous Carbons from N2 Adsorption Isotherm at 77 K</title><author>Wang, Song ; Li, Yi ; Dai, Sheng ; Jiang, De‐en</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2561-9c86ccffb2f8cb6af0192ea20fc3ac62c945b7d423d734ffa3358effa826ce833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>adsorption</topic><topic>machine learning</topic><topic>materials science</topic><topic>neural networks</topic><topic>porous materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Song</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Dai, Sheng</creatorcontrib><creatorcontrib>Jiang, De‐en</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Song</au><au>Li, Yi</au><au>Dai, Sheng</au><au>Jiang, De‐en</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction by Convolutional Neural Networks of CO2/N2 Selectivity in Porous Carbons from N2 Adsorption Isotherm at 77 K</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2020-10-26</date><risdate>2020</risdate><volume>59</volume><issue>44</issue><spage>19645</spage><epage>19648</epage><pages>19645-19648</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Porous carbons are an important class of porous materials with many applications, including gas separation. An N2 adsorption isotherm at 77 K is the most widely used approach to characterize porosity. Conventionally, textual properties such as surface area and pore volumes are derived from the N2 adsorption isotherm at 77 K by fitting it to adsorption theory and then correlating it to gas separation performance (uptake and selectivity). Here the N2 isotherm at 77 K was used directly as input (representing feature descriptors for the porosity) to train convolutional neural networks to predict gas separation performance (using CO2/N2 as a test case) for porous carbons. The porosity space for porous carbons was explored for higher CO2/N2 selectivity. Porous carbons with a bimodal pore‐size distribution of well‐separated mesopores (3–7 nm) and micropores (&lt;2 nm) were found to be most promising. This work will be useful in guiding experimental research of porous carbons with the desired porosity for gas separation and other applications. Training set: The 77K N2 adsorption isotherms of porous carbons are used to train convolutional neural networks for prediction of gas separation performance. The approach allows exploration of a much broader porosity space to predict promising ones for higher CO2/N2 selectivity.</abstract><doi>10.1002/anie.202005931</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-8046-3931</orcidid><orcidid>https://orcid.org/0000-0002-5222-3674</orcidid><orcidid>https://orcid.org/0000-0001-5167-0731</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2020-10, Vol.59 (44), p.19645-19648
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2409192589
source Access via Wiley Online Library
subjects adsorption
machine learning
materials science
neural networks
porous materials
title Prediction by Convolutional Neural Networks of CO2/N2 Selectivity in Porous Carbons from N2 Adsorption Isotherm at 77 K
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20by%20Convolutional%20Neural%20Networks%20of%20CO2/N2%20Selectivity%20in%20Porous%20Carbons%20from%20N2%20Adsorption%20Isotherm%20at%2077%E2%80%89K&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Wang,%20Song&rft.date=2020-10-26&rft.volume=59&rft.issue=44&rft.spage=19645&rft.epage=19648&rft.pages=19645-19648&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202005931&rft_dat=%3Cproquest_wiley%3E2409192589%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409192589&rft_id=info:pmid/&rfr_iscdi=true