Prediction by Convolutional Neural Networks of CO2/N2 Selectivity in Porous Carbons from N2 Adsorption Isotherm at 77 K
Porous carbons are an important class of porous materials with many applications, including gas separation. An N2 adsorption isotherm at 77 K is the most widely used approach to characterize porosity. Conventionally, textual properties such as surface area and pore volumes are derived from the N2 ad...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2020-10, Vol.59 (44), p.19645-19648 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19648 |
---|---|
container_issue | 44 |
container_start_page | 19645 |
container_title | Angewandte Chemie International Edition |
container_volume | 59 |
creator | Wang, Song Li, Yi Dai, Sheng Jiang, De‐en |
description | Porous carbons are an important class of porous materials with many applications, including gas separation. An N2 adsorption isotherm at 77 K is the most widely used approach to characterize porosity. Conventionally, textual properties such as surface area and pore volumes are derived from the N2 adsorption isotherm at 77 K by fitting it to adsorption theory and then correlating it to gas separation performance (uptake and selectivity). Here the N2 isotherm at 77 K was used directly as input (representing feature descriptors for the porosity) to train convolutional neural networks to predict gas separation performance (using CO2/N2 as a test case) for porous carbons. The porosity space for porous carbons was explored for higher CO2/N2 selectivity. Porous carbons with a bimodal pore‐size distribution of well‐separated mesopores (3–7 nm) and micropores ( |
doi_str_mv | 10.1002/anie.202005931 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2409192589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409192589</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2561-9c86ccffb2f8cb6af0192ea20fc3ac62c945b7d423d734ffa3358effa826ce833</originalsourceid><addsrcrecordid>eNo9kD1PwzAYhC0EEqWwMntkSeuPfDhjFRWoqNpKwGw5jg2GJC522iobK3-TX4Lbok73nvTc6dUBcIvRCCNExqI1akQQQSjJKT4DA5wQHNEso-fhjimNMpbgS3Dl_UfgGUPpAPQrpyojO2NbWPawsO3W1pu9FTVcqI07SLez7tNDq2GxJOMFgc-qViG0NV0PTQtX1tmNh4VwpW091M42MFCTylu3PnTPvO3elWug6GCW_X7_PF2DCy1qr27-dQhe76cvxWM0Xz7Misk8eiNJiqNcslRKrUuimSxToRHOiRIEaUmFTInM46TMqpjQKqOx1oLShKmgjKRSMUqH4O7Yu3b2a6N8xxvjpapr0arwNCcxykNlwvKA5kd0Z2rV87UzjXA9x4jvB-b7gflpYD5ZzKYnR_8ANb5zng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409192589</pqid></control><display><type>article</type><title>Prediction by Convolutional Neural Networks of CO2/N2 Selectivity in Porous Carbons from N2 Adsorption Isotherm at 77 K</title><source>Access via Wiley Online Library</source><creator>Wang, Song ; Li, Yi ; Dai, Sheng ; Jiang, De‐en</creator><creatorcontrib>Wang, Song ; Li, Yi ; Dai, Sheng ; Jiang, De‐en</creatorcontrib><description>Porous carbons are an important class of porous materials with many applications, including gas separation. An N2 adsorption isotherm at 77 K is the most widely used approach to characterize porosity. Conventionally, textual properties such as surface area and pore volumes are derived from the N2 adsorption isotherm at 77 K by fitting it to adsorption theory and then correlating it to gas separation performance (uptake and selectivity). Here the N2 isotherm at 77 K was used directly as input (representing feature descriptors for the porosity) to train convolutional neural networks to predict gas separation performance (using CO2/N2 as a test case) for porous carbons. The porosity space for porous carbons was explored for higher CO2/N2 selectivity. Porous carbons with a bimodal pore‐size distribution of well‐separated mesopores (3–7 nm) and micropores (<2 nm) were found to be most promising. This work will be useful in guiding experimental research of porous carbons with the desired porosity for gas separation and other applications.
Training set: The 77K N2 adsorption isotherms of porous carbons are used to train convolutional neural networks for prediction of gas separation performance. The approach allows exploration of a much broader porosity space to predict promising ones for higher CO2/N2 selectivity.</description><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202005931</identifier><language>eng</language><subject>adsorption ; machine learning ; materials science ; neural networks ; porous materials</subject><ispartof>Angewandte Chemie International Edition, 2020-10, Vol.59 (44), p.19645-19648</ispartof><rights>2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8046-3931 ; 0000-0002-5222-3674 ; 0000-0001-5167-0731</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202005931$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202005931$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wang, Song</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Dai, Sheng</creatorcontrib><creatorcontrib>Jiang, De‐en</creatorcontrib><title>Prediction by Convolutional Neural Networks of CO2/N2 Selectivity in Porous Carbons from N2 Adsorption Isotherm at 77 K</title><title>Angewandte Chemie International Edition</title><description>Porous carbons are an important class of porous materials with many applications, including gas separation. An N2 adsorption isotherm at 77 K is the most widely used approach to characterize porosity. Conventionally, textual properties such as surface area and pore volumes are derived from the N2 adsorption isotherm at 77 K by fitting it to adsorption theory and then correlating it to gas separation performance (uptake and selectivity). Here the N2 isotherm at 77 K was used directly as input (representing feature descriptors for the porosity) to train convolutional neural networks to predict gas separation performance (using CO2/N2 as a test case) for porous carbons. The porosity space for porous carbons was explored for higher CO2/N2 selectivity. Porous carbons with a bimodal pore‐size distribution of well‐separated mesopores (3–7 nm) and micropores (<2 nm) were found to be most promising. This work will be useful in guiding experimental research of porous carbons with the desired porosity for gas separation and other applications.
Training set: The 77K N2 adsorption isotherms of porous carbons are used to train convolutional neural networks for prediction of gas separation performance. The approach allows exploration of a much broader porosity space to predict promising ones for higher CO2/N2 selectivity.</description><subject>adsorption</subject><subject>machine learning</subject><subject>materials science</subject><subject>neural networks</subject><subject>porous materials</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAYhC0EEqWwMntkSeuPfDhjFRWoqNpKwGw5jg2GJC522iobK3-TX4Lbok73nvTc6dUBcIvRCCNExqI1akQQQSjJKT4DA5wQHNEso-fhjimNMpbgS3Dl_UfgGUPpAPQrpyojO2NbWPawsO3W1pu9FTVcqI07SLez7tNDq2GxJOMFgc-qViG0NV0PTQtX1tmNh4VwpW091M42MFCTylu3PnTPvO3elWug6GCW_X7_PF2DCy1qr27-dQhe76cvxWM0Xz7Misk8eiNJiqNcslRKrUuimSxToRHOiRIEaUmFTInM46TMqpjQKqOx1oLShKmgjKRSMUqH4O7Yu3b2a6N8xxvjpapr0arwNCcxykNlwvKA5kd0Z2rV87UzjXA9x4jvB-b7gflpYD5ZzKYnR_8ANb5zng</recordid><startdate>20201026</startdate><enddate>20201026</enddate><creator>Wang, Song</creator><creator>Li, Yi</creator><creator>Dai, Sheng</creator><creator>Jiang, De‐en</creator><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8046-3931</orcidid><orcidid>https://orcid.org/0000-0002-5222-3674</orcidid><orcidid>https://orcid.org/0000-0001-5167-0731</orcidid></search><sort><creationdate>20201026</creationdate><title>Prediction by Convolutional Neural Networks of CO2/N2 Selectivity in Porous Carbons from N2 Adsorption Isotherm at 77 K</title><author>Wang, Song ; Li, Yi ; Dai, Sheng ; Jiang, De‐en</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2561-9c86ccffb2f8cb6af0192ea20fc3ac62c945b7d423d734ffa3358effa826ce833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>adsorption</topic><topic>machine learning</topic><topic>materials science</topic><topic>neural networks</topic><topic>porous materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Song</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Dai, Sheng</creatorcontrib><creatorcontrib>Jiang, De‐en</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Song</au><au>Li, Yi</au><au>Dai, Sheng</au><au>Jiang, De‐en</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction by Convolutional Neural Networks of CO2/N2 Selectivity in Porous Carbons from N2 Adsorption Isotherm at 77 K</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2020-10-26</date><risdate>2020</risdate><volume>59</volume><issue>44</issue><spage>19645</spage><epage>19648</epage><pages>19645-19648</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Porous carbons are an important class of porous materials with many applications, including gas separation. An N2 adsorption isotherm at 77 K is the most widely used approach to characterize porosity. Conventionally, textual properties such as surface area and pore volumes are derived from the N2 adsorption isotherm at 77 K by fitting it to adsorption theory and then correlating it to gas separation performance (uptake and selectivity). Here the N2 isotherm at 77 K was used directly as input (representing feature descriptors for the porosity) to train convolutional neural networks to predict gas separation performance (using CO2/N2 as a test case) for porous carbons. The porosity space for porous carbons was explored for higher CO2/N2 selectivity. Porous carbons with a bimodal pore‐size distribution of well‐separated mesopores (3–7 nm) and micropores (<2 nm) were found to be most promising. This work will be useful in guiding experimental research of porous carbons with the desired porosity for gas separation and other applications.
Training set: The 77K N2 adsorption isotherms of porous carbons are used to train convolutional neural networks for prediction of gas separation performance. The approach allows exploration of a much broader porosity space to predict promising ones for higher CO2/N2 selectivity.</abstract><doi>10.1002/anie.202005931</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-8046-3931</orcidid><orcidid>https://orcid.org/0000-0002-5222-3674</orcidid><orcidid>https://orcid.org/0000-0001-5167-0731</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2020-10, Vol.59 (44), p.19645-19648 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2409192589 |
source | Access via Wiley Online Library |
subjects | adsorption machine learning materials science neural networks porous materials |
title | Prediction by Convolutional Neural Networks of CO2/N2 Selectivity in Porous Carbons from N2 Adsorption Isotherm at 77 K |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20by%20Convolutional%20Neural%20Networks%20of%20CO2/N2%20Selectivity%20in%20Porous%20Carbons%20from%20N2%20Adsorption%20Isotherm%20at%2077%E2%80%89K&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Wang,%20Song&rft.date=2020-10-26&rft.volume=59&rft.issue=44&rft.spage=19645&rft.epage=19648&rft.pages=19645-19648&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202005931&rft_dat=%3Cproquest_wiley%3E2409192589%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409192589&rft_id=info:pmid/&rfr_iscdi=true |